精英家教网 > 初中数学 > 题目详情

如图,网格图的每个小正方形边长均为1.△OAB的顶点均在格点上.已知△与△OAB是以O为位似中心的位似图形,且位似比为1︰3.

(1)请在第一象限内画出△;
(2)试求出△的面积.

(1)图形见解析;(2)△的面积为1.

解析试题分析:(1)位似比为1︰3,第一象限内(1.2), (1,0),连接即可;
(2)△为直角三角形,可直接求出面积.
试题解析: (1)如图△

(2)
考点:位似图形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,在△ABC中,AB=4,AC=3,D、E分别是AB、AC上的动点,在边AC上取一点E,使A、D、E三点组成的三角形与△ABC相似.
(1)当AD=2时,求AE的长;
(2)当AD=3时,求AE的长;
(3)通过上面两题的解答,你发现了什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知是△的角平分线,上的一点,且

(1)求证:△∽△
(2)求证:△∽△
(3)求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在△ABC中,AB=AC,∠A=36°,∠ABC的平分线交AC于D,

(1)求证:△ABC∽△BCD;
(2)若BC=2,求AB的长。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在中,,,.求证:

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,若以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知△ABC是等腰直角三角形,∠A=90°,点D是腰AC上的一个动点,过C作CE垂直于BD的延长线,垂足为E.

(1)若BD是AC边上的中线,如图1,求的值;
(2)若BD是∠ABC的角平分线,如图2,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读理解:
如图1,若在四边形ABCD的边AB上任取一点E(点E与点A,B不重合),分别连结ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:
(1)如图1,若∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;
拓展探究:
(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,请直接写出的值.

图1                 图2                       图3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,正△ABC中,∠ADE=60°,

(1)求证:△ABD∽△DCE;
(2)若BD=2,CD=4,求AE的长.

查看答案和解析>>

同步练习册答案