精英家教网 > 初中数学 > 题目详情

如图,在等腰三角形ABC中,AB=AC,以AC为直径作圆O,与BC交于点E,过点E作ED⊥AB,垂足为点D,
(1)求证:DE为⊙O的切线;
(2)过O点作EC的垂线,垂足为H,求证:EH•BE=BD•CO.

(1)证明:连接OE,∵AB=AC,∴∠B=∠C(1分)
∵OC=OE,∴∠C=∠CEO,(1分)
∴∠B=∠CEO,∴AB∥EO,(1分)
∵DE⊥AB,∴EO⊥DE,(1分)
∵EO是圆O的半径,
∴D为⊙O的切线.(1分)

(2)解:∵OH⊥BC,∴EH=HC,∠OHC=90°(1分)
∵∠B=∠C,∠BDE=∠CHO=90°
∴△BDE∽△CHO(2分),
(1分)
∵EH=HC,
∴EH•BE=BD•CO.(1分)
分析:(1)连接OE,根据等边对等角,由AB=AC得到∠B=∠C,再由半径OC与OE相等得到∠C=∠CEO,利用等量代换得到∠B=∠CEO,由同位角相等两直线平行,得到AB与EO平行,再根据两直线平行内错角相等,由角BDE为直角得到角DEO为直角,又OE为圆O的半径,根据切线的判断方法得到DE为⊙O的切线;
(2)根据垂径定理,由OH与BC垂直,得到H为EC中点即CH与EH相等,然后由两对角相等的两三角形相似得到△BDE∽△CHO,得到对应边成比例,把CH换为EH即可得证.
点评:本题考查切线的性质和判定、垂径定理及相似三角形的性质与判定的综合运用.证明切线的方法有两种:有连接圆心与这点,证明夹角为直角;无点作垂线,证明垂线段长等于半径.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、已知:如图,在等腰三角形ABC中,∠A=90°,∠ABC的平分线BD与AC交于点D,DE⊥BC于点E.求证:AD=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•长春)感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF.(不要求证明)
拓展:如图②,点B、C分别在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求证:△ABE≌△CAF.
应用:如图③,在等腰三角形ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为
6
6

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰三角形ABC中,AB=AC=12,BC=8,又BD=3,CE=2.
求证:△ABD∽△BCE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图,在等腰三角形ABC中,AB=AC,AD是BC边上的中线,∠ABC的平分线BG,交AD于点E,EF⊥AB,垂足为F.
①若∠BAD=20°,则∠C=
70°
70°

②求证:EF=ED.
(2)如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.
①求∠ECD的度数;
②若CE=5,求BC长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰三角形ABC中,AB=AC,∠A=40°,线段AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE等于(  )

查看答案和解析>>

同步练习册答案