·ÖÎö £¨1£©ÓɵãBµÄ×ø±êÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇó³ö·´±ÈÀýº¯Êý½âÎöʽ£»ÓɵãAÔÚ·´±ÈÀýº¯ÊýͼÏóÉϽáºÏµãAµÄºá×ø±ê¼´¿ÉµÃ³öµãAµÄ×ø±ê£¬ÔÙÓɵãA¡¢BµÄ×ø±êÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇó³öÒ»´Îº¯Êý½âÎöʽ£»
£¨2£©¸ù¾ÝÁ½º¯ÊýͼÏóµÄÉÏÏÂλÖùØϵ£¬¼´¿ÉÕÒ³ö²»µÈʽµÄ½â£»
£¨3£©Á¬½ÓBD£¬ÓɵãAµÄ×ø±ê¿ÉÇó³öDµãµÄ×ø±ê£¬ÓÉÁ½µã¼äµÄ¾àÀ빫ʽ¼´¿ÉÇó³öAD¡¢AB¡¢BDµÄ³¤¶È£¬´Ó¶ø¿ÉÇó³ö¡÷ABDµÄÖܳ¤£¬ÔÙ¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½¼´¿ÉÇó³ö¡÷ABDµÄÃæ»ý£»
£¨4£©¹ýµãO×÷µÚÒ»ÈýÏóÏ޵ĽÇƽ·ÖÏßl£¬Á¬½ÓAP½»Ö±ÏßlÓÚµãQ£¬´ËʱPQ+AQ×î¶Ì£¬¸ù¾ÝOP=5ÒÔ¼°µãPÔÚ·´±ÈÀýº¯ÊýͼÏóÉϼ´¿ÉÇó³öµãPµÄ×ø±ê£¬ÓɵãA¡¢PµÄ×ø±êÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇó³öÖ±ÏßAPµÄ½âÎöʽ£¬ÁªÁ¢Ö±ÏßAPºÍl½âÎöʽ³É·½³Ì×飬½â·½³Ì×é¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©¡ßµãB£¨-6£¬-2£©ÔÚ·´±ÈÀýº¯Êýy2=$\frac{{k}_{2}}{x}$ µÄͼÏóÉÏ£¬
¡à-2=$\frac{{k}_{2}}{-6}$£¬½âµÃ£ºk2=12£¬
¡à·´±ÈÀýº¯Êý½âÎöʽΪy2=$\frac{12}{x}$£®
¡ßµãA£¨2£¬m£©ÔÚ·´±ÈÀýº¯Êýy2=$\frac{12}{x}$µÄͼÏóÉÏ£¬
¡àm=$\frac{12}{2}$=6£¬¼´A£¨2£¬6£©£®
½«A£¨2£¬6£©¡¢B£¨-6£¬-2£©´úÈëy1=k1x+bÖУ¬
µÃ$\left\{\begin{array}{l}{2{k}_{1}+b=6}\\{-6{k}_{1}+b=-2}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{{k}_{1}=1}\\{b=4}\end{array}\right.$£¬
¡àÒ»´Îº¯Êýy1=x+4£®
¹Ê´ð°¸Îª£ºx+4£»$\frac{12}{x}$£®
£¨2£©¹Û²ìº¯ÊýͼÏ󣬷¢ÏÖ£º
µ±x£¼-6»ò0£¼x£¼2ʱ£¬Ò»´Îº¯ÊýͼÏóÔÚ·´±ÈÀýº¯ÊýͼÏóµÄÏ·½£¬
¡àµ± y1£¼y2ʱ£¬xµÄÈ¡Öµ·¶Î§ÊÇx£¼-6»ò0£¼x£¼2£®
¹Ê´ð°¸Îª£ºx£¼-6»ò0£¼x£¼2£®
£¨3£©Á¬½ÓBD£¬Èçͼ1Ëùʾ£®
¡ßµãA£¨2£¬6£©£¬
¡àµãD£¨2£¬0£©£¬
¡àAB=8$\sqrt{2}$£¬AD=6£¬BD=2$\sqrt{17}$£¬
¡àC¡÷ABD=AB+BD+AD=8$\sqrt{2}$+2$\sqrt{17}$+6£®
S¡÷ABD=$\frac{1}{2}$AD•£¨xA-xB£©=$\frac{1}{2}$¡Á6¡Á[2-£¨-6£©]=24£®
£¨4£©¹ýµãO×÷µÚÒ»ÈýÏóÏ޵ĽÇƽ·ÖÏßl£¬Á¬½ÓAP½»Ö±ÏßlÓÚµãQ£¬´ËʱPQ+AQ×î¶Ì£¬Èçͼ2Ëùʾ£®
¡ßÖ±ÏßlΪµÚÒ»ÈýÏóÏ޵ĽÇƽ·ÖÏߣ¬
¡àÖ±ÏßlµÄ½âÎöʽΪy=x£®
ÉèµãPµÄ×ø±êΪ£¨m£¬n£©£¨0£¼n£¼m£©£¬
¡ßµãPÔÚ·´±ÈÀýº¯Êýy2=$\frac{12}{x}$µÄͼÏóÉÏ£¬ÇÒOP=5£¬
¡à$\left\{\begin{array}{l}{mn=12}\\{{m}^{2}+{n}^{2}=25}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{m=4}\\{n=3}\end{array}\right.$£¬»ò$\left\{\begin{array}{l}{m=3}\\{n=4}\end{array}\right.$£¨ÉáÈ¥£©£¬»ò$\left\{\begin{array}{l}{m=-4}\\{n=-3}\end{array}\right.$£¨ÉáÈ¥£©£¬»ò$\left\{\begin{array}{l}{m=-3}\\{n=-4}\end{array}\right.$£¨ÉáÈ¥£©£¬
¡àµãP£¨4£¬3£©£®
ÉèÖ±ÏßAPµÄ½âÎöʽΪy=ax+c£¬
ÔòÓÐ$\left\{\begin{array}{l}{6=2a+c}\\{3=4a+c}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{a=-\frac{3}{2}}\\{c=9}\end{array}\right.$£¬
¡àÖ±ÏßAPµÄ½âÎöʽΪy=-$\frac{3}{2}$x+9£®
ÁªÁ¢Ö±ÏßAP¡¢lµÄ½âÎöʽµÃ£º$\left\{\begin{array}{l}{y=-\frac{3}{2}x+9}\\{y=x}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{x=\frac{18}{5}}\\{y=\frac{18}{5}}\end{array}\right.$£®
¹ÊµãQµÄ×ø±êΪ£¨$\frac{18}{5}$£¬$\frac{18}{5}$£©£®
µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ¡¢Èý½ÇÐεÄÃæÒÔ¼°Öܳ¤£¬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©ÀûÓôý¶¨ÏµÊý·¨Çó³öº¯Êý½âÎöʽ£»£¨2£©¸ù¾Ýº¯ÊýͼÏóµÄÉÏÏÂλÖùØϵ½â¾ö²»µÈʽ£»£¨3£©Çó³öÏ߶ÎAD¡¢AB¡¢BDµÄ³¤¶È£»£¨4£©ÕÒ³öµãQµÄλÖã®±¾ÌâÊôÓÚÖеµÌ⣬ÄѶȲ»´ó£¬µ«½Ï·±Ëö£¬½â¾ö¸ÃÌâÐÍÌâĿʱ£¬ÕÒ³öµãµÄ×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨Çó³öº¯Êý½âÎöʽÊǹؼü£®
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 4 | B£® | 4$\sqrt{2}$ | C£® | 2$\sqrt{17}$ | D£® | 5 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\sqrt{12}-\sqrt{3}=\sqrt{3}$ | B£® | $\sqrt{2}+\sqrt{3}=\sqrt{5}$ | C£® | $3\sqrt{5}-\sqrt{5}=3$ | D£® | $3+2\sqrt{2}=5\sqrt{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$ | B£® | $\left\{\begin{array}{l}{x=0}\\{y=2}\end{array}\right.$ | C£® | $\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$ | D£® | $\left\{\begin{array}{l}{x=3}\\{y=-1}\end{array}\right.$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | ËıßÐÎ | B£® | µÈÑüÈý½ÇÐÎ | C£® | ÁâÐÎ | D£® | ÌÝÐÎ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com