4£®Èçͼ£¬Ò»´Îº¯Êýy1=k1x+b Óë·´±ÈÀýº¯Êýy2=$\frac{{k}_{2}}{x}$ µÄͼÏó½»ÓÚµãA£¨2£¬m£©ºÍB£¨-6£¬-2£©£¬ÓëyÖá½»ÓÚµãC£®
£¨1£©y1=x+4£¬y2=$\frac{12}{x}$£»
£¨2£©¸ù¾Ýº¯ÊýͼÏó¿ÉÖª£¬µ± y1£¼y2ʱ£¬xµÄÈ¡Öµ·¶Î§ÊÇx£¼-6»ò0£¼x£¼2£»
£¨3£©¹ýµãA×÷AD¡ÍxÖáÓÚµãD£¬Çó¡÷ABDµÄÃæ»ýºÍÖܳ¤£®
£¨4£©µãPÊÇ·´±ÈÀýº¯ÊýÔÚµÚÒ»ÏóÏÞµÄͼÏóÉÏÒ»µã£¬¡ÏPOD¡Ü45¡ã£¬P¡¢OÁ½µãÖ®¼ä¾àÀëÊÇ5£¬ÔÚÏóÏÞ½Çƽ·ÖÏßÉÏÓÐÒ»µãQ£¬ÇÒÏ߶ÎQPÓëQAºÍ×îС£¬ÇóµãQµÄ×ø±ê£®

·ÖÎö £¨1£©ÓɵãBµÄ×ø±êÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇó³ö·´±ÈÀýº¯Êý½âÎöʽ£»ÓɵãAÔÚ·´±ÈÀýº¯ÊýͼÏóÉϽáºÏµãAµÄºá×ø±ê¼´¿ÉµÃ³öµãAµÄ×ø±ê£¬ÔÙÓɵãA¡¢BµÄ×ø±êÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇó³öÒ»´Îº¯Êý½âÎöʽ£»
£¨2£©¸ù¾ÝÁ½º¯ÊýͼÏóµÄÉÏÏÂλÖùØϵ£¬¼´¿ÉÕÒ³ö²»µÈʽµÄ½â£»
£¨3£©Á¬½ÓBD£¬ÓɵãAµÄ×ø±ê¿ÉÇó³öDµãµÄ×ø±ê£¬ÓÉÁ½µã¼äµÄ¾àÀ빫ʽ¼´¿ÉÇó³öAD¡¢AB¡¢BDµÄ³¤¶È£¬´Ó¶ø¿ÉÇó³ö¡÷ABDµÄÖܳ¤£¬ÔÙ¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½¼´¿ÉÇó³ö¡÷ABDµÄÃæ»ý£»
£¨4£©¹ýµãO×÷µÚÒ»ÈýÏóÏ޵ĽÇƽ·ÖÏßl£¬Á¬½ÓAP½»Ö±ÏßlÓÚµãQ£¬´ËʱPQ+AQ×î¶Ì£¬¸ù¾ÝOP=5ÒÔ¼°µãPÔÚ·´±ÈÀýº¯ÊýͼÏóÉϼ´¿ÉÇó³öµãPµÄ×ø±ê£¬ÓɵãA¡¢PµÄ×ø±êÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇó³öÖ±ÏßAPµÄ½âÎöʽ£¬ÁªÁ¢Ö±ÏßAPºÍl½âÎöʽ³É·½³Ì×飬½â·½³Ì×é¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©¡ßµãB£¨-6£¬-2£©ÔÚ·´±ÈÀýº¯Êýy2=$\frac{{k}_{2}}{x}$ µÄͼÏóÉÏ£¬
¡à-2=$\frac{{k}_{2}}{-6}$£¬½âµÃ£ºk2=12£¬
¡à·´±ÈÀýº¯Êý½âÎöʽΪy2=$\frac{12}{x}$£®
¡ßµãA£¨2£¬m£©ÔÚ·´±ÈÀýº¯Êýy2=$\frac{12}{x}$µÄͼÏóÉÏ£¬
¡àm=$\frac{12}{2}$=6£¬¼´A£¨2£¬6£©£®
½«A£¨2£¬6£©¡¢B£¨-6£¬-2£©´úÈëy1=k1x+bÖУ¬
µÃ$\left\{\begin{array}{l}{2{k}_{1}+b=6}\\{-6{k}_{1}+b=-2}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{{k}_{1}=1}\\{b=4}\end{array}\right.$£¬
¡àÒ»´Îº¯Êýy1=x+4£®
¹Ê´ð°¸Îª£ºx+4£»$\frac{12}{x}$£®
£¨2£©¹Û²ìº¯ÊýͼÏ󣬷¢ÏÖ£º
µ±x£¼-6»ò0£¼x£¼2ʱ£¬Ò»´Îº¯ÊýͼÏóÔÚ·´±ÈÀýº¯ÊýͼÏóµÄÏ·½£¬
¡àµ± y1£¼y2ʱ£¬xµÄÈ¡Öµ·¶Î§ÊÇx£¼-6»ò0£¼x£¼2£®
¹Ê´ð°¸Îª£ºx£¼-6»ò0£¼x£¼2£®
£¨3£©Á¬½ÓBD£¬Èçͼ1Ëùʾ£®
¡ßµãA£¨2£¬6£©£¬
¡àµãD£¨2£¬0£©£¬
¡àAB=8$\sqrt{2}$£¬AD=6£¬BD=2$\sqrt{17}$£¬
¡àC¡÷ABD=AB+BD+AD=8$\sqrt{2}$+2$\sqrt{17}$+6£®
S¡÷ABD=$\frac{1}{2}$AD•£¨xA-xB£©=$\frac{1}{2}$¡Á6¡Á[2-£¨-6£©]=24£®
£¨4£©¹ýµãO×÷µÚÒ»ÈýÏóÏ޵ĽÇƽ·ÖÏßl£¬Á¬½ÓAP½»Ö±ÏßlÓÚµãQ£¬´ËʱPQ+AQ×î¶Ì£¬Èçͼ2Ëùʾ£®
¡ßÖ±ÏßlΪµÚÒ»ÈýÏóÏ޵ĽÇƽ·ÖÏߣ¬
¡àÖ±ÏßlµÄ½âÎöʽΪy=x£®
ÉèµãPµÄ×ø±êΪ£¨m£¬n£©£¨0£¼n£¼m£©£¬
¡ßµãPÔÚ·´±ÈÀýº¯Êýy2=$\frac{12}{x}$µÄͼÏóÉÏ£¬ÇÒOP=5£¬
¡à$\left\{\begin{array}{l}{mn=12}\\{{m}^{2}+{n}^{2}=25}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{m=4}\\{n=3}\end{array}\right.$£¬»ò$\left\{\begin{array}{l}{m=3}\\{n=4}\end{array}\right.$£¨ÉáÈ¥£©£¬»ò$\left\{\begin{array}{l}{m=-4}\\{n=-3}\end{array}\right.$£¨ÉáÈ¥£©£¬»ò$\left\{\begin{array}{l}{m=-3}\\{n=-4}\end{array}\right.$£¨ÉáÈ¥£©£¬
¡àµãP£¨4£¬3£©£®
ÉèÖ±ÏßAPµÄ½âÎöʽΪy=ax+c£¬
ÔòÓÐ$\left\{\begin{array}{l}{6=2a+c}\\{3=4a+c}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{a=-\frac{3}{2}}\\{c=9}\end{array}\right.$£¬
¡àÖ±ÏßAPµÄ½âÎöʽΪy=-$\frac{3}{2}$x+9£®
ÁªÁ¢Ö±ÏßAP¡¢lµÄ½âÎöʽµÃ£º$\left\{\begin{array}{l}{y=-\frac{3}{2}x+9}\\{y=x}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{x=\frac{18}{5}}\\{y=\frac{18}{5}}\end{array}\right.$£®
¹ÊµãQµÄ×ø±êΪ£¨$\frac{18}{5}$£¬$\frac{18}{5}$£©£®

µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ¡¢Èý½ÇÐεÄÃæÒÔ¼°Öܳ¤£¬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©ÀûÓôý¶¨ÏµÊý·¨Çó³öº¯Êý½âÎöʽ£»£¨2£©¸ù¾Ýº¯ÊýͼÏóµÄÉÏÏÂλÖùØϵ½â¾ö²»µÈʽ£»£¨3£©Çó³öÏ߶ÎAD¡¢AB¡¢BDµÄ³¤¶È£»£¨4£©ÕÒ³öµãQµÄλÖã®±¾ÌâÊôÓÚÖеµÌ⣬ÄѶȲ»´ó£¬µ«½Ï·±Ëö£¬½â¾ö¸ÃÌâÐÍÌâĿʱ£¬ÕÒ³öµãµÄ×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨Çó³öº¯Êý½âÎöʽÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÎªÁ˽âѧÉú¿ÎÓà»î¶¯Çé¿ö£¬Ä³Ð£¶Ô²Î¼Ó»æ»­¡¢Êé·¨¡¢Î赸¡¢ÀÖÆ÷ÕâËĸö¿ÎÍâÐËȤС×éµÄÈËÔ±·Ö²¼Çé¿ö½øÐгéÑùµ÷²é£¬²¢¸ù¾ÝÊÕ¼¯µÄÊý¾Ý»æÖÆÁËÈçͼÁ½·ù²»ÍêÕûµÄͳ¼Æͼ£¬Çë¸ù¾ÝͼÖÐÌṩµÄÐÅÏ¢£¬½â´ðÏÂÃæµÄÎÊÌ⣺

£¨1£©ÔÚÕâ´Î³éÑùµ÷²éÖУ¬Ò»¹²³éÈ¡Á˶àÉÙÃûͬѧ£¿
£¨2£©½«ÌõÐÎͼ²¹³äÍêÕû£¬²¢¼ÆËãÉÈÐÎͳ¼ÆͼÖÐÊé·¨²¿·ÖµÄÔ²ÐĽǵĶÈÊý£»
£¨3£©Èç¹û¸ÃУ¹²ÓÐ1200ÃûѧÉú²Î¼ÓÕâ4¸ö¿ÎÍâÐËȤС×飬¶øÿλ½Ìʦ×î¶àÖ»Äܸ¨µ¼±¾×éµÄ20ÃûѧÉú£¬ÔòÊ鷨С×éÐèÒª¶àÉÙÃû½Ìʦ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÈçͼËùʾ£¬Õý·½ÐÎABCDµÄ±ß³¤Îª4£¬µãMÔÚ±ßDCÉÏ£¬ÇÒDM=1£¬µãNÊDZßACÉÏÒ»¶¯µã£¬ÔòÏ߶ÎDN+MNµÄ×îСֵΪ£¨¡¡¡¡£©
A£®4B£®4$\sqrt{2}$C£®2$\sqrt{17}$D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÏÂÁмÆËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®$\sqrt{12}-\sqrt{3}=\sqrt{3}$B£®$\sqrt{2}+\sqrt{3}=\sqrt{5}$C£®$3\sqrt{5}-\sqrt{5}=3$D£®$3+2\sqrt{2}=5\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬¾ØÐÎOABCµÄ±ßOA¡¢OC·Ö±ðÔÚxÖáºÍyÖáÉÏ£¬OC=3£¬OA=2$\sqrt{6}$£¬DÊÇBCµÄÖе㣬½«¡÷OCDÑØÖ±ÏßODÕÛµþºóµÃµ½¡÷OGD£¬ÑÓ³¤OG½»ABÓÚµãE£¬Á¬½ÓDE£¬ÔòµãGµÄ×ø±êΪ£¨$\frac{6\sqrt{6}}{5}$£¬$\frac{3}{5}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÏÂÁи÷×éÖУ¬ÊǶþÔªÒ»´Î·½³Ìx-5y=2µÄÒ»¸ö½âµÄÊÇ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$B£®$\left\{\begin{array}{l}{x=0}\\{y=2}\end{array}\right.$C£®$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$D£®$\left\{\begin{array}{l}{x=3}\\{y=-1}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÏÂÁм¸ºÎͼÐÎÖУ¬¼´ÊÇÖÐÐĶԳÆͼÐÎÓÖÊÇÖá¶Ô³ÆͼÐεÄÊÇ£¨¡¡¡¡£©
A£®ËıßÐÎB£®µÈÑüÈý½ÇÐÎC£®ÁâÐÎD£®ÌÝÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®»¯¼òÇóÖµ£º[£¨xy+3£©£¨xy-3£©-2x2y2]¡Âxy£¬ÆäÖÐx=4£¬y=-$\frac{1}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ1£¬ÒÑÖªÕý·½ÐÎABCDµÄ±ß³¤Îª6£¬¡ÏA=¡ÏB=¡ÏC=¡ÏD=90¡ã£¬AB=BC=CD=AD£¬µãPΪÕý·½ÐÎABCD±ßÉϵĶ¯µã£¬¶¯µãP´ÓµãA³ö·¢£¬ÑØ×ÅA¡úB¡úC¡úDÔ˶¯µ½Dµãʱֹͣ£¬ÉèµãP¾­¹ýµÄ·³ÌΪx£¬¡÷APDµÄÃæ»ýΪy£®

£¨1£©Èçͼ2£¬µ±x=2ʱ£¬y=6£»
£¨2£©Èçͼ3£¬µ±µãPÔÚ±ßBCÉÏÔ˶¯Ê±£¬y=18£»
£¨3£©µ±y=12ʱ£¬ÇóxµÄÖµ£»
£¨4£©µ±µãPÔÚ±ßBCÉÏÔ˶¯Ê±£¬ÊÇ·ñ´æÔÚµãP£¬Ê¹µÃ¡÷APDµÄÖܳ¤×îС£¿Èô´æÔÚ£¬Çó³ö´ËʱxµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸