精英家教网 > 初中数学 > 题目详情

【题目】求证:角平分线上的点到这个角的两边的距离相等.

要求:(1)尺规作图:作∠AOB的角平分线,并在该角平分线上取点P,作PMOA于点MPNOB于点N(不写作法,保留作图痕迹)

(2)以下是结合要证的命题和图形写出的已知,求证,请你完成证明过程.

已知:如图,OP平分∠AOBPMOA于点MPNOB于点N.

求证:PM=PN

证明:

【答案】详见解析

【解析】

1)根据角平分线的作法得出即可;

(2)运用角角边定理先证△OPM≌△OPN,再根据全等三角形的性质得到PM=PN.

(1)如图所示:

证明:∵OP平分∠AOB

∴∠AOP=BOP

PMOAPNOB

∴∠OMP=ONP=90°

OPMOPN中,

∴△OPM≌△OPNAAS).

PM=PN

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200/台.经过市场销售后发现:在一个月内,当售价是400/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300/台,代理销售商每月要完成不低于450台的销售任务.

1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;

2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某同学模仿二维码的方式为学校设计了一个身份识别图案系统:在的正方形网格中,黑色正方形表示数字1,白色正方形表示数字0.如图1是某个学生的身份识别图案.约定如下:把第i行,第j列表示的数字记为(其中ij=1234),如图1中第2行第1列的数字=0;对第i行使用公式进行计算,所得结果表示所在年级,表示所在班级,表示学号的十位数字,表示学号的个位数字.如图1中,第二行,说明这个学生在5.

1)图1代表的学生所在年级是______年级,他的学号是_________

2)请仿照图1,在图2中画出八年级4班学号是36的同学的身份识别图案

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某面粉加工厂加工的面粉,用每袋可装10g面粉的袋子装了200袋经过称重,质量超过标准质量10kg的用正数表示,质量低于标准质量10kg的用负数表示,结果记录如下

与标准质量的偏差(kg)

1.5

1

0.5

0

0.5

1

2

袋数()

40

30

10

25

40

20

35

(1)求这批面粉的总质量;

(2)如果100kg小麦加工80kg面粉,那么这批面粉是由多少千克小麦加工的?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校计划购买若干台电脑,现从两家商场了解到同一种型号的电脑报价均为6000元,并且多买都有一定的优惠.各商场的优惠条件如下表所示:

商场

优惠条件

甲商场

第一台按原价收费,其余的每台优惠25%

乙商场

每台优惠20%

(1)设学校购买台电脑,选择甲商场时,所需费用为元,选择乙商场时,所需费用为元,请分别求出之间的关系式.

(2)什么情况下,两家商场的收费相同?什么情况下,到甲商场购买更优惠?什么情况下,到乙商场购买更优惠?

(3)现在因为急需,计划从甲乙两商场一共买入10台电脑,已知甲商场的运费为每台50元,乙商场的运费为每台60元,设总运费为元,从甲商场购买台电脑,在甲商场的库存只有4台的情况下,怎样购买,总运费最少?最少运费是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线,交CE的延长线于点F,且AF=BD,连接BF.

(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把两个全等的等腰直角三角板ABCEFG(其直角边长均为4)叠放在一起(如图1),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合,现将三角板EFGO点顺时针旋转,旋转角满足条件四边形CHGK是旋转过程中两三角板的重叠部分(如图2).

(1)在上述旋转过程中,BHCK有怎样的数量关系?证明你的结论;

(2)在上述旋转过程中,两个直角三角形的重叠部分面积是否会发生改变?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在菱形中,对角线的中点,点分别是上动点,连接,则的最小值是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A的坐标为(﹣44),点B的坐标为(02).

1)求直线AB的解析式;

2)如图,以点A为直角顶点作∠CAD90°,射线ACx轴于点C,射线ADy轴于点D.当∠CAD绕着点A旋转,且点Cx轴的负半轴上,点Dy轴的负半轴上时,OCOD的值是否发生变化?若不变,求出它的值;若变化,求出它的变化范围.

查看答案和解析>>

同步练习册答案