精英家教网 > 初中数学 > 题目详情
如图,PA是⊙O的切线,A为切点,PBC是过点O的割线.若PA=8cm,PB=4cm,则⊙O的直径为(  )
A.6cmB.8cmC.12cmD.16cm

∵PA2=PB•PC,PA=8cm,PB=4cm,
∴PC=16cm,
∴BC=12cm.
故选C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,以点O′(1,1)为圆心,OO′为半径画圆,判断点P(-1,1),点Q(1,0),点R(2,2)和⊙O′的位置关系.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点A、B在⊙O上,直线AC是⊙O的切线,OD⊥OB,连接AB交OC于点D.
(1)求证:AC=CD;
(2)若AC=2,AO=
5
,求OD的长度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连接DE.
(1)DE与半圆O相切吗?若相切,请给出证明;若不相切,说明理由;
(2)如果AD,AB的长是方程x2-10x+24=0的两个根,试求直角边BC的长;
(3)试在(1)(2)的基础上,提出一个有价值的问题(不必解答).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点O在Rt△ABC的斜边AB上,以O为圆心,OA长为半径的⊙O切BC于点D,且分别交AC、AB于点E、F,若AC=6,BC=6
3

(1)求⊙O的半径;
(2)求弓形EDF的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E是⊙O上一点,D是AM上一点,连接DE并延长交BN于点C,且ODBE,OFBN.
(1)求证:DE与⊙O相切;
(2)求证:OF=
1
2
CD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知⊙O的直径AB与弦AC的夹角为30°,过点C的切线PC与AB的延长线交于P.PC=5,则⊙O的半径为(  )
A.
5
3
6
B.
5
3
3
C.5D.10

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O1和⊙O2内切于点A,⊙O2的弦BC切⊙O1于D.AD的延长线交⊙O2于M,连接AB、AC分别交⊙O1于E、F,连接EF.
(1)求证:EFBC;
(2)求证:AB•AC=AD•AM;
(3)若⊙O1的半径r1=3,⊙O2的半径r2=8,BC是⊙O2的直径,求AB和AC的长(AB>AC).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是
EB
的中点,则下列结论不成立的是(  )
A.OCAEB.EC=BCC.∠DAE=∠ABED.AC⊥OE

查看答案和解析>>

同步练习册答案