12£®ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬µãÓëµãÖ®¼ä´æÔÚÒ»Öֱ任T£¬Ôڱ任TµÄ×÷ÓÃÏ£¬µãP£¨x£¬y£©±»±äΪµãP¡ä£¨2x-y£¬3x-2y+3£©£®ÀýÈ磺µ±Pµã×ø±êΪ£¨1£¬0£©Ê±£¬Ôڱ任TµÄ×÷ÓÃϱäΪµãP¡ä£¨2¡Á1-0£¬3¡Á1-2¡Á0+3£©£¬¼´ÎªP¡ä£¨2£¬6£©£®
£¨1£©ÈôµãMÔڱ任TµÄ×÷ÓÃϱäΪM¡ä£¨1£¬-1£©£¬ÇóµãMµÄ×ø±ê£»
£¨2£©ÈôµãN£¨$\frac{m}{4}$£¬m£©Ôڱ任TµÄ×÷ÓÃϱäΪµÄ¶ÔÓ¦µãN¡äÔÚµÚ¶þÏóÏÞ£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£»
£¨3£©ÉèƽÃæÖ±½Ç×ø±êϵÉϵÄÈÎÒâÒ»µãQ£¨x£¬y£©Ôڱ任TµÄ×÷ÓÃ϶ÔÓ¦µãΪQ¡ä£¬ÎÊÊÇ·ñ´æÔÚÒ»´Îº¯Êýy=kx+b£¬Ê¹µÃµãQºÍQ¡ä¶¼ÔÚÕâ¸öÒ»´Îº¯ÊýµÄͼÏóÉÏ£¿Èô´æÔÚ£¬Çó³ök¡¢bµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Ê×ÏÈÉèµãMµÄ×ø±êÊÇ£¨x£¬y£©£¬ÔòÔڱ任TµÄ×÷ÓÃÏ£¬µãM£¨x£¬y£©±»±äΪµãM¡ä£¨2x-y£¬3x-2y+3£©£¬È»ºó¸ù¾ÝµãM¡äµÄ×ø±êÊÇ£¨1£¬-1£©£¬Áгö¶þÔªÒ»´Î·½³Ì×飬Çó³öx¡¢yµÄÖµ£¬¼´¿ÉÇó³öµãMµÄ×ø±ê£®
£¨2£©Ê×ÏÈÇó³öµãN£¨$\frac{m}{4}$£¬m£©Ôڱ任TµÄ×÷ÓÃϵĵãN¡äµÄ×ø±êÊǶàÉÙ£»È»ºó¸ù¾ÝµãN¡äÔÚµÚ¶þÏóÏÞ£¬¿ÉµÃµãN¡äµÄºá×ø±êСÓÚ0£¬×Ý×ø±ê´óÓÚ0£¬Çó³öʵÊýmµÄÈ¡Öµ·¶Î§¼´¿É£®
£¨3£©¢Ùµ±x=yʱ£¬²»´æÔÚÒ»´Îº¯Êýy=kx+b£¬Ê¹µÃµãQºÍQ¡ä¶¼ÔÚÕâ¸öÒ»´Îº¯ÊýµÄͼÏóÉÏ£»¢Úµ±x¡Ùyʱ£¬´æÔÚÒ»´Îº¯Êýy=kx+b£¬Ê¹µÃµãQºÍQ¡ä¶¼ÔÚÕâ¸öÒ»´Îº¯ÊýµÄͼÏóÉÏ£¬¸ù¾ÝµãQºÍQ¡ä¶¼ÔÚÒ»´Îº¯Êýy=kx+bµÄͼÏóÉÏ£¬Áгö¶þÔªÒ»´Î·½³Ì×飬Çó³ök¡¢bµÄÖµ¸÷ÊǶàÉÙ¼´¿É£®

½â´ð ½â£º£¨1£©ÉèµãMµÄ×ø±êÊÇ£¨x£¬y£©£¬
ÔòÔڱ任TµÄ×÷ÓÃÏ£¬µãM£¨x£¬y£©±»±äΪµãM¡ä£¨2x-y£¬3x-2y+3£©£¬
¡à$\left\{\begin{array}{l}{2x-y=1}\\{3x-2y+3=-1}\end{array}\right.$
½âµÃ$\left\{\begin{array}{l}{x=6}\\{y=11}\end{array}\right.$
¡àµãMµÄ×ø±êÊÇ£¨6£¬11£©£®

£¨2£©2x-y=2¡Á$\frac{m}{4}$-m=$\frac{m}{2}-m=-\frac{m}{2}$
3x-2y+3=3¡Á$\frac{m}{4}$-2m+3=$\frac{3}{4}m$-2m+3=-$\frac{5}{4}m+3$
¡ßµãN¡äÔÚµÚ¶þÏóÏÞ£¬
¡à$\left\{\begin{array}{l}{-\frac{m}{2}£¼0}\\{-\frac{5}{4}m+3£¾0}\end{array}\right.$
½âµÃ0£¼m£¼2.4£¬
¼´ÊµÊýmµÄÈ¡Öµ·¶Î§ÊÇ0£¼m£¼2.4£®

£¨3£©¢Ùµ±x=yʱ£¬²»´æÔÚÒ»´Îº¯Êýy=kx+b£¬Ê¹µÃµãQºÍQ¡ä¶¼ÔÚÕâ¸öÒ»´Îº¯ÊýµÄͼÏóÉÏ£®
¢Úµ±x¡Ùyʱ£¬´æÔÚÒ»´Îº¯Êýy=kx+b£¬Ê¹µÃµãQºÍQ¡ä¶¼ÔÚÕâ¸öÒ»´Îº¯ÊýµÄͼÏóÉÏ£®
¢Ùµ±x=yʱ£¬
¡ßµãQ£¨x£¬x£©Ôڱ任TµÄ×÷ÓÃ϶ÔÓ¦µãΪQ¡ä£¨x£¬x+3£©£¬
¡à²»´æÔÚÒ»´Îº¯Êýy=kx+b£¬Ê¹µÃµãQºÍQ¡ä¶¼ÔÚÕâ¸öÒ»´Îº¯ÊýµÄͼÏóÉÏ£®

¢Úµ±x¡Ùyʱ£¬µãQ£¨x£¬y£©Ôڱ任TµÄ×÷ÓÃ϶ÔÓ¦µãΪQ¡ä£¨2x-y£¬3x-2y+3£©£¬
¡ßµãQºÍQ¡ä¶¼ÔÚÒ»´Îº¯Êýy=kx+bµÄͼÏóÉÏ£¬
¡à$\left\{\begin{array}{l}{y=kx+b}\\{3x-2y+3=k£¨2x-y£©+b}\end{array}\right.$
½âµÃ$\left\{\begin{array}{l}{k=3-\frac{3}{y-x}}\\{b=y-3x+\frac{3x}{y-x}}\end{array}\right.$
¡àµ±x¡Ùyʱ£¬´æÔÚÒ»´Îº¯Êýy=kx+b£¬Ê¹µÃµãQºÍQ¡ä¶¼ÔÚÕâ¸öÒ»´Îº¯ÊýµÄͼÏóÉÏ£¬´Ëʱk=3-$\frac{3}{y-x}$£¬b=y-3x+$\frac{3x}{y-x}$£®

µãÆÀ £¨1£©´ËÌâÖ÷Òª¿¼²éÁËÒ»´Îº¯Êý×ÛºÏÌ⣬¿¼²éÁË·ÖÎöÍÆÀíÄÜÁ¦£¬¿¼²éÁË·ÖÀàÌÖÂÛ˼ÏëµÄÓ¦Ó㬿¼²éÁË´ÓÒÑÖªº¯ÊýͼÏóÖлñÈ¡ÐÅÏ¢£¬²¢ÄÜÀûÓûñÈ¡µÄÐÅÏ¢½â´ðÏàÓ¦µÄÎÊÌâµÄÄÜÁ¦£®
£¨2£©´ËÌ⻹¿¼²éÁ˸÷¸öÏóÏ޵ĵãµÄÌØÕ÷£¬ÒÔ¼°¼¸ºÎ±ä»»µÄ֪ʶ£¬ÒªÊìÁ·ÕÆÎÕ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖª´úÊýʽ3x2-6x+3µÄֵΪ9£¬Ôò´úÊýʽx2-2x+6µÄֵΪ£¨¡¡¡¡£©
A£®7B£®8C£®9D£®18

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬EÊÇBC±ßÉϵÄÒ»µã£¬EC=2BE£¬µãDÊÇABµÄÖе㣬ÇÒS¡÷ABC=18£¬ÔòSËıßÐÎCDFEµÄÃæ»ý£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÔÚƽÃæÖ±½Ç×ø±êϵÄÚ£¬µãOΪ×ø±êÔ­µã£¬Ò»´Îº¯Êýy=kx+bµÄͼÏóÓë·´±ÈÀýº¯Êýy=$\frac{m}{x}$µÄͼÏó½»ÓÚA£¬BÁ½µã£¬ÈôA£¨4£¬1£©£¬µãBµÄºá×ø±êΪ-2£®
£¨1£©Çó·´±ÈÀýº¯Êý¼°Ò»´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÈôÒ»´Îº¯Êýy=kx+bµÄͼÏó½»xÖáÓÚµãC£¬¹ýC×÷xÖáµÄ´¹Ïß½»·´±ÈÀýº¯ÊýͼÏóÓÚµãD£¬Á¬½ÓOA£¬OD£¬AD£¬Çó¡÷AODµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖª£ºÈçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Ò»´Îº¯Êýy=-xµÄͼÏóÓë·´±ÈÀýº¯Êýy=-$\frac{1}{x}$µÄͼÏó½»ÓÚA¡¢BÁ½µã£®
£¨1£©ÇóA£¬BÁ½µãµÄ×ø±ê£»
£¨2£©Èç¹ûµãPÔÚyÖáÉÏ£¬ÇÒÂú×ãÒÔµãA¡¢B¡¢PΪ¶¥µãµÄÈý½ÇÐÎÊÇÖ±½ÇÈý½ÇÐΣ¬ÊÔд³öµãPËùÓпÉÄܵÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Ä³ÉÌÆ·°´±ê¼ÛµÄÆßÕÛÏúÊÛ¿ÉÒÔ»ñÀû25Ôª£¬ÒÑÖª¸ÃÉÌÆ·½ø¼ÛΪ50Ôª£¬Ôò±ê¼ÛΪ¶àÉÙÔª£¿£¨Ö»ÐèÁз½³Ì£¬²»ÐèÒª½â´ð£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®¼ÆË㣺1+$\frac{1}{1+2}$$+\frac{1}{1+2+3}$$+¡­+\frac{1}{1+2+3+¡­+2012}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Óù«Ê½·¨½âÏÂÁз½³Ì£º
£¨1£©x2-2x-8=0£»
£¨2£©4x2+8x+1=0£»
£¨3£©3y2+1=2$\sqrt{3}$y£»
£¨4£©x2+4x+10=1-8x£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖª$\sqrt{2}$£¨x-1£©-1=x£¬Ôòx=3+2$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸