某商场“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:
类别 | 冰箱 | 彩电 |
进价(元/台) | 2 320 | 1 900 |
售价(元/台) | 2 420 | 1 980 |
(1) 按国家政策,农民购买“家电下乡”产品可享受售价13%的政府补贴.农民田大伯到该商场购买了冰箱、彩电各一台,可以享受多少元的政府补贴?
(2)为满足农民需求,商场决定用不超过85 000元采购冰箱、彩电共40台, 且冰箱的数量不少于彩电数量的。
①请你帮助该商场设计相应的进货方案;
②哪种进货方案商场获得利润最大(利润=售价进价),最大利润是多少?
解:(1) (2 420+1 980)×13%=572.
答:可以享受政府572元的补贴.
(2) ①设冰箱采购x台,则彩电采购(40-x)台,
根据题意,得
解不等式组,得≤x≤
∵x为正整数. ∴x= 19,20,21.
∴该商场共有3种进货方案:
方案一:冰箱购买19台,彩电购买21台
方案二:冰箱购买20台,彩电购买20台;
方案三:冰箱购买21台,彩电购买19台.
②设商场获得总利润y元,根据题意,得
y=(2 420 2 320)x+(1 980 40-x)=20x+3 200,
显然,当x=21时,y最大=20×21+3 200=3 620.
答:方案三商场获得利润最大,最大利润是3 620元.
科目:初中数学 来源: 题型:
如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
查看答案和解析>>
科目:初中数学 来源: 题型:
数学的美无处不在,数学家们研究发现弹拨琴弦发出声音的音调高低取决于弦的长度,如三根弦长之比为15:12:10,把它们绷得一样紧,用同样的力度弹拨,它们将分别发出很调和的乐声:do、mi、so,研究15,12,10这三个数的倒数发现:,此时我们称15,12,10为一组调和数,现有三个数:5,3,x(),若要组成调和数,则x的值为___________
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,直线:经过点一组抛物线的顶点(为正整数)依次是直线上的点,这组抛物线与轴正半轴的交点依次是:(为正整数),设若抛物线的顶点与轴的两个交点构成的三角形是直角三角形,则我们把这种抛物线就称为:“美丽抛物线”.则当的大小变化时美丽抛物线相应的的值是
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,已知直线a//b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=.试在直线a上找一点M,在直线b上找一点N,满足
MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=( )
A.6 B.8 C.10 D.12
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合),现将PAB沿PB翻折,得到PDB;再在OC边上选取适当的点E,将POE沿PE翻折,得到PFE,并使直线PD、PF重合。
(1)设P(x,0),E(0,y),求y关于x的函数关系式及自变量x的取值范围,并求出y的最大值;
(2)如图,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;
|
|
②
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com