精英家教网 > 初中数学 > 题目详情

甲、乙两名同学进行登山比赛,图中表示甲同学和乙同学沿相同的路线同时从山脚出发到达山顶过程中,各自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:
(1)分别求出表示甲、乙两同学登山过程中路程s(千米)与时间t(时)的函数解析式;(不要求写出自变量t的取值范围)
(2)当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;
(3)在(2)的条件下,设乙同学从A处继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B处与乙相遇,此时点B与山顶距离为1.5千米,相遇后甲、乙各自按原来的路线下山和上山,求乙到达山顶时,甲离山脚的距离是多少千米?

解:(1)设甲、乙两同学登山过程中,路程s(千米)与时间t(时)的函数解析式分别为S=k1t,S=k2t
由题意,得6=2k1,6=3k2
∴k1=3,k2=2
∴解析式分别为S=3t,S=2t

(2)甲到达山顶时,由图象可知,当S=12千米,代入S=3t得t=4(小时)
∴S=2×4=8(千米)
∴12-8=4(千米)
答:当甲到达山顶时,乙距山顶的距离为4千米.

(3)由图象知:甲到达山顶并休息1小时后点D的坐标为(5,12)
由题意,得:点B的纵坐标为,代入S=2t,
解得:
∴点B(
设过B、D两点的直线解析式为S=kt+b,
由题意,得:,解得
∴直线BD的解析式为S=-6t+42
当乙到达山顶时,S=12,得t=6,把t=6代入S=-6t+42得S=6(千米)
答:乙到达山顶时,甲距山脚6千米.
分析:(1)由图可知,甲、乙两同学登山过程中路程s与时间t都成正比例函数,分别设为S=k1t,S=k2t,用待定系数法可求解.
(2)由图可知,甲到达山顶时路程为12千米,即山脚到山顶的距离为12千米,代入S可求得所花的时间,再把时间代入S即可求得A点离山脚的距离,则A点与山顶的距离可求.
(3)由图象知:甲到达山顶并休息1小时后点D的坐标为(5,12),点B的坐标也可求,则线段DF所在直线的一次函数表达式可求,而乙到达山顶的时间可求,则题目可求解.
点评:本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从坐标系中提取信息的能力,是道综合性较强的代数应用题,有一定的能力要求.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

甲、乙两名同学进行登山比赛,图中表示甲同学和乙同学沿相同的路线同时从山脚出发到达山顶过程中,各自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:
(1)分别求出表示甲、乙两同学登山过程中路程s(千米)与时间t(时)的函数解析式;(不要求写出自变量t的取值范围)
(2)当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;
(3)在(2)的条件下,设乙同学从A处继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B处与乙相遇,此时点B与山顶距离为1精英家教网.5千米,相遇后甲、乙各自按原来的路线下山和上山,求乙到达山顶时,甲离山脚的距离是多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

11、甲、乙两名同学进行登山比赛,图中表示甲同学和乙同学沿相同的路线同时从山脚出发到达山顶过程中,各处行进的路程随时间变化的图象,根据图象中的有关数据下列问题:①甲到达山顶需要4小时;②乙到达山顶需要6小时;③甲到达山顶时,乙距山顶还有4千米;④若甲同学到达山顶后休息1小时,沿原路下山,在点B处与乙相遇,此时点B与山顶距离为1.5千米,则甲从山顶回到山脚需要2小时.其中正确的说法有(  )

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《一次函数》(04)(解析版) 题型:解答题

(2005•哈尔滨)甲、乙两名同学进行登山比赛,图中表示甲同学和乙同学沿相同的路线同时从山脚出发到达山顶过程中,各自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:
(1)分别求出表示甲、乙两同学登山过程中路程s(千米)与时间t(时)的函数解析式;(不要求写出自变量t的取值范围)
(2)当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;
(3)在(2)的条件下,设乙同学从A处继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B处与乙相遇,此时点B与山顶距离为1.5千米,相遇后甲、乙各自按原来的路线下山和上山,求乙到达山顶时,甲离山脚的距离是多少千米?

查看答案和解析>>

科目:初中数学 来源:2005年黑龙江省哈尔滨市中考数学试卷(解析版) 题型:解答题

(2005•哈尔滨)甲、乙两名同学进行登山比赛,图中表示甲同学和乙同学沿相同的路线同时从山脚出发到达山顶过程中,各自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:
(1)分别求出表示甲、乙两同学登山过程中路程s(千米)与时间t(时)的函数解析式;(不要求写出自变量t的取值范围)
(2)当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;
(3)在(2)的条件下,设乙同学从A处继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B处与乙相遇,此时点B与山顶距离为1.5千米,相遇后甲、乙各自按原来的路线下山和上山,求乙到达山顶时,甲离山脚的距离是多少千米?

查看答案和解析>>

同步练习册答案