精英家教网 > 初中数学 > 题目详情
如图,已知O是线段AB上一点,以OB为半径作圆O交AB于点C,以线段AO为直径作弧OD交圆O于点D,过点B作AB的垂线交AD的延长线于点E,若线段AO、OD的长是一元二次方程x2-3x+2=0的两根.
(1)求证:AE是⊙O的切线;
(2)求线段EB的长.

【答案】分析:(1)欲证AE是切线,只需证AE⊥OD.根据直径所对的圆周角是直角易证;
(2)根据切线长定理得BE=ED;根据勾股定理易求AD的长;设BE=x.在Rt△ABE中,根据勾股定理得方程求解.
解答:证明:(1)∵以线段AO为直径作弧OD交圆O于点D,
∴∠ODA=90°,即AE⊥OD.
∴AE是⊙O的切线;(5分)

(2)解方程:x1=1,x2=2,
∴OA=2,OD=1.                                        (3分)
AD=.所以AB=3.
设EB=x,
则EB=ED=x.
x2+9=(x+2
x=,即EB=.                                      (6分)
点评:①掌握切线的判定方法:经过半径的外端且垂直于该半径的直线是圆的切线.
②综合运用切线长定理和勾股定理解题,是圆中解直角三角形常用的方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知B是线段AE上一点,ABCD和BEFG都是正方形,连接AG、CE.
(1)求证:AG=CE;
(2)设CE与GF的交点为P,求证:
PG
CG
=
PE
AG

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知CD是线段AB的垂直平分线,垂足为D,E是CD上一点.若∠A=60°,则下列结论中错误的是(  )
A、AE=BEB、AD=BDC、AB=ACD、ED=AD

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知C是线段AB的中点,则CD等于(  )
精英家教网
A、AD-BD
B、
1
2
(AD-BD)
C、
1
2
AB-BD
D、AD-
1
2
AB

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宿迁)如图,已知P是线段AB的黄金分割点,且PA>PB,若S1表示PA为一边的正方形的面积,S2表示长是AB,宽是PB的矩形的面积,则S1
=
=
S2.(填“>”“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图①,已知C是线段AB上一点,分别以AC、BC为边长在AB的同侧作等边△ADC与等边△CBE,试猜想AE与DB的大小关系,并证明.
(2)如图②,当等边△CBE绕点C旋转后,上述结论是否仍成立?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案