精英家教网 > 初中数学 > 题目详情
某商品的进价为每件90元.最初售价为每件100元,后来提价销售.经统计售价与月销售量,得到下列数据表:
售价(元/件) 100 101 102 103
月销售量(件) 500 490 480 470
(1)猜测月销售量(y)与售价(x)之间的函数关系式?
(2)求利润(w)与销售价(x)之间的函数关系式?
(3)当x为何值时,利润最大?最大利润是多少?
分析:(1)由表格中的数据可判断出月销售量(y)与售价(x)成一次函数的关系,设y=kx+b,代入求得函数关系式.
(2)按照等量关系“利润=(销售价-进价)×月销售量”列出函数关系式.
(3)根据(2)中的函数关系式,求得函数的最值.
解答:解:(1)设月销售量(y)与售价(x)之间的函数关系式满足y=kx+b,
将(100,500)、(101,490)代入:
100k+b=500
101k+b=490

解得:
k=-10
b=1500

则月销售量(y)与售价(x)之间的函数关系式为y=-10x+1500.

(2)由题意得:
利润W=(x-90)(-10x+1500)=-10x2+2400x-135000.

(3)由(2)求得的函数关系式
W=-10x2+2400x-135000=-10(x-120)2+9000.
∴当x=120时,利润最大,最大利润是9000.
点评:本题考查了二次函数在实际生活中应用,重点是二次函数求最值问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)当售价的范围是多少时,使得每件商品的利润率不超过80%且每个月的利润不低于2250元?

查看答案和解析>>

科目:初中数学 来源: 题型:

某商品的进价为每件40元,售价为每件60元时,每个月可卖出800件;如果每件商品的售价每上涨1元,则每个月少卖20件.设每件商品售价为x元,每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大销售利润?最大的月销售利润是多少元?
(3)物价部门规定每件商品的利润率不高于100%,商家为了使每个月的销售利润不低于10000元,如何定价,商品的月销售量最大?最大销售量是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件.市场调查反映:如果调整价格,每涨价一元,每星期要少卖出10件.设该商品定价为每件x元.
(1)该商店每星期的销售量是
900-10x
900-10x
件(用含x的代数式表示);
(2)设商场每星期获得的利润为y元,求y与x的函数关系式;
(3)该商品应定价为多少元时,商场能获得最大利润?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•巴中)某商品的进价为每件50元,售价为每件60元,每个月可卖出200件,如果每件商品的售价上涨1元,则每个月少买10件(每件售价不能高于72元),设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件.市场调查反映:如调整价格进行涨价销售,每涨价一元,每星期要少卖出10件.该商品应定价为多少元时,商场能获得最大利润?

查看答案和解析>>

同步练习册答案