精英家教网 > 初中数学 > 题目详情

a不是一个正数,用不等式表示为_______.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

先阅读,再解题
用配方法解一元二次方程ax2+bx+c=0(a≠0)如下:
移项,得ax2+bx=-c,
方程两边除以a,得x2+
b
a
x=-
c
a

方程两边加上(
b
2a
)2
,得x2+
b
a
x+(
b
2a
)2=-
c
a
+(
b
2a
)2
,即(x+
b
2a
)2=
b2-4ac
4a

因为a≠0,所以4a2>0,从而当b2-4ac>0时,方程右边是一个正数,正数的平方根有两个,因此方程有两个不相等的实数根;当b2-4ac=0时,方程右边是零,因此方程有两个相等的实数根;当b2-4ac>0时,方程右边是一个负数,而负数没有平方根,因此方程没有实数根.
所以我们可以根据b2-4ac的值来判断方程的根的情况,请利用上述论断,不解方程,判别下列方程的根的情况.
(1)x2-14x+12=0        (2)4x2+12x+9=0        (3)2x2-3x+6=0        (4)3x2+3x-4=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

下列说法中错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

用配方法解一元二次方程ax2+bx+c=0(a≠0)如下:
移项,得ax2+bx=-c,
方程两边除以a,得数学公式
方程两边加上数学公式,得数学公式,即数学公式
因为a≠0,所以4a2>0,从而当b2-4ac>0时,方程右边是一个正数,正数的平方根有两个,因此方程有两个不相等的实数根;当b2-4ac=0时,方程右边是零,因此方程有两个相等的实数根;当b2-4ac>0时,方程右边是一个负数,而负数没有平方根,因此方程没有实数根.
所以我们可以根据b2-4ac的值来判断方程的根的情况,请利用上述论断,不解方程,判别下列方程的根的情况.
(1)x2-14x+12=0        (2)4x2+12x+9=0        (3)2x2-3x+6=0        (4)3x2+3x-4=0.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列说法中错误的是(  )
A.一个正数的前面加上负号就是负数
B.不是正数的数一定是负数
C.0既不是正数,也不是负数
D.正负数可以用来表示具有相反意义的量

查看答案和解析>>

同步练习册答案