精英家教网 > 初中数学 > 题目详情

已知:如图,四边形ABCD是圆内接四边形,数学公式=数学公式,以AD为直径作⊙O交BA的延长线于E,交AC于F.
(1)求证:AE=AE;
(2)设AB=2,AC=7,求AE的长.

(1)证明:连接DE、DF,
∵AD是⊙O的直径,
∴∠E=90°,∠DFA=90°,
=
∴∠DBC=∠DCB,
∵∠EAD=∠DCB,∠DAC=∠DBC,
∴∠EAD=∠DAF,
在△ADE≌△ADF中

∴△ADE≌△ADF,
∴AE=AF;

(2)解:由(1)得DE=DF,
在Rt△DEB和Rt△DFC中

∴Rt△DEB≌Rt△DFC,
∴EB=FC,
∴AE+AB=AC-AF.
由(1)知AE=AF,
∴AE+AB=AC-AE,
∴AE=(AC-AB)=(7-2)=
分析:(1)连接DE、DF,根据直径所对的圆周角为直角由AD是⊙O的直径得到∠E=90°,∠DFA=90°,由=得∠DBC=∠DCB,又∠EAD=∠DCB,∠DAC=∠DBC,则∠EAD=∠DAF,根据“AAS”可判断△ADE≌△ADF,所以AE=AF;
(2)先根据“HL”可判断Rt△DEB≌Rt△DFC,则EB=FC,AE+AB=AC-AF,于是AE+AB=AC-AE,然后把AB=2,AC=7代入计算即可.
点评:本题考查了圆周角定理及其讨论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角为直角.也考查了全等三角形的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图,四边形ABCD中∠B=90°,AB=9,BC=12,AD=8,CD=17.
试求:(1)AC的长;(2)四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,四边形ABCD内接于⊙O,且AB∥CD,AD∥BC,
求证:四边形ABCD是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,四边形ABCD是正方形,E、F分别是AB和AD延长线上的点,且BE=DF
(1)求证:CE=CF;
(2)求∠CEF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,四边形ABCD中,BC=CD=10,AB=15,AB⊥BC,CD⊥BC,若把四边形ABCD绕直线AB旋转一周,则所得几何体的表面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,四边形ABCD及一点P.
求作:四边形A′B′C′D′,使得它是由四边形ABCD绕P点顺时针旋转150°得到的.

查看答案和解析>>

同步练习册答案