精英家教网 > 初中数学 > 题目详情
小明对直角三角形很感兴趣. △ABC中,∠ACB=90°,D是AB上任意一点,连接DC,作DE⊥DC,EA⊥AC,DE与AE交于点E.请你跟着他一起解决下列问题:

(1)如图1,若△ABC是等腰直角三角形,则DE,DC有什么数量关系?请给出证明.
(2)如果换一个直角三角形,如图2,∠CBA=30°,则DE,DC又有什么数量关系?请给出证明.
(3)由(1)、(2)这两种特殊情况,小明提出问题:如果直角三角形ABC中,BC=mAC,那DE, DC有什么数量关系?请给出证明.
(1)DE=DC,证明见解析;(2)DC=DE,证明见解析;(2)DC=DE,证明见解析.

试题分析:(1) 过点D作DF⊥AC,DG⊥AE于点G,通过证明△CDF≌△EDG而得出结论;
(2) 过点D作DF⊥AC,DG⊥AE于点G,应用锐角三角函数定义和.特殊角的三角函数值,通过证明△CDF∽△EDG而得出结论;
(3) 过点D作DF⊥AC,DG⊥AE于点G,根据BC=mAC,通过证明△CDF∽△EDG而得出结论.
试题解析:(1)DE=DC,证明如下:
如图,过点D作DF⊥AC,DG⊥AE于点G,
由EA⊥AC可知四边形AGDF为矩形,∴DG="FA."
∵DF∥BC,△ABC是等腰直角三角形,∴DF=AF,即DG=DF.
又∵DE⊥DC,∴∠CDE-∠EDF=∠FDG-∠EDF,即∠CDF=∠EDG.
∴△CDF≌△EDG. ∴DE=DC.

(2)DC=DE,证明如下:
如图,过点D作DF⊥AC,DG⊥AE于点G,
由EA⊥AC可知四边形AGDF为矩形,∴DG=FA.
∵DE⊥DC,∴∠CDE-∠EDF=∠FDG-∠EDF,即∠CDF=∠EDG. ∴△CDF∽△EDG. ∴.
又∵△ADF∽△ABC,∴.
∵∠CBA=30°,∴.
.∴DC=DE.

(3) DC=DE.证明如下:
如图,过点D作DF⊥AC,DG⊥AE于点G,
由EA⊥AC可知四边形AGDF为矩形,∴DG=FA.
∵DE⊥DC,∴∠CDE-∠EDF=∠FDG-∠EDF,即∠CDF=∠EDG. ∴△CDF∽△EDG. ∴.
又∵△ADF∽△ABC,∴.
∵BC=mAC,∴.∴DC=DE.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠B= 90°,点P从A点开始沿AB边向点B以1厘米/秒的速度移动,点Q从B点开始沿BC边向点C以2厘米/秒的速度移动。

(1)如果P、Q分别从A、B两点同时出发,经过几秒钟,△PBQ的面积等于8厘米2
(2)如果P、Q两分别从A、B两点同时出发,并且P到B又继续在BC边上前进,Q到C后又继续在CA边上前进,经过几秒钟,△PCQ的面积等于12﹒6厘米2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如果,那么             .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,Rt△ABC中,CD是斜边AB上的高.求证:AC2=AD·AB

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列说法中正确的是(  )
①在两个边数相同的多边形中,如果对应边成比例,那么这两个多边形相似;
②如果两个矩形有一组邻边对应成比例,那么这两个矩形相似;
③有一个角对应相等的平行四边形都相似;
④有一个角对应相等的菱形都相似.
A.①②B.②③C.③④D.②④

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在□ABCD中,点P为边AB上的一点,E,F分别是PD,PC的中点,CD=2.则①EF=      ;②设△PEF,△PAD,△PBC的面积分别为.已知,则           

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知:在边长为12的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=3,则BE长为( )

A.1                B.2.5              C.2.25             D.1.5

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如左图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与相似的是(   )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在平行四边形ABCD中,AB=6,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且AB=3CF,DG⊥AE,垂足为G,若DG=2,则AE的边长为(  )
A.4B.6C.6D.4

查看答案和解析>>

同步练习册答案