【题目】阅读下列材料
我们通过下列步骤估计方程2x2+x﹣2=0的根的所在的范围.
第一步:画出函数y=2x2+x﹣2的图象,发现图象是一条连续不断的曲线,且与x轴的一个
交点的横坐标在0,1之间.
第二步:因为当x=0时,y=﹣2<0;当x=1时,y=1>0.
所以可确定方程2x2+x﹣2=0的一个根x1所在的范围是0<x1<1.
第三步:通过取0和1的平均数缩小x1所在的范围;
取x=,因为当x=时,y<0,
又因为当x=1时,y>0,
所以<x1<1.
(1)请仿照第二步,通过运算,验证2x2+x﹣2=0的另一个根x2所在范围是﹣2<x2<﹣1;
(2)在﹣2<x2<﹣1的基础上,重复应用第三步中取平均数的方法,将x2所在范围缩小至m<x2<n,使得n﹣m≤.
【答案】(1)见解析;(2)见解析.
【解析】
(1)计算x=﹣2和x=﹣1时,y的值,确定其x2所在范围是﹣2<x2<﹣1;
(2)先根据第三步﹣2和﹣1的平均数确定x=﹣,计算x=﹣时y的值,得﹣<x2<﹣1,同理再求﹣1和﹣的平均数为﹣,计算x=﹣时y的值,从而得结论.
(1)解:因为当x=﹣2时,y>0;当x=﹣1时,y<0,
所以方程2x2+x﹣2=0的另一个根x2所在的范围是﹣2<x2<﹣1.…
(2)取x==﹣,因为当x=﹣时,y=2×﹣﹣2=1>0,
又因为当x=﹣1时,y=﹣1<0,
所以﹣<x2<﹣1,
取x==﹣,因为当x=﹣时,y=2×﹣﹣2=﹣<0,
又因为当x=﹣时,y>0,
所以﹣<x2<﹣,
又因为﹣﹣(﹣)=,
所以﹣<x2<﹣即为所求x2 的范围.
科目:初中数学 来源: 题型:
【题目】在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).
请解答下列问题:
(1)请补全条形统计图和扇形统计图;
(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?
(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?
(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后.
(1)随机抽取一张,求抽到数字2的概率;
(2)随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,请你用画树状图或列表格的方法表示所有可能的结果,并求出点(a,b)在第四象限的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图像与坐标轴交于A、B两点,点C的坐标为,二次函数的图像经过A、B、C三点.
(1)求二次函数的解析式
(2)如图1,已知点在抛物线上,作射线BD,点Q为线段AB上一点,过点Q作轴于点M,作于点N,过Q作轴交抛物线于点P,当QM与QN的积最大时,求点P的坐标;
(3)在(2)的条件下,连接AP,若点E为抛物线上一点,且满足,求点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数与反比例函数的图象在第一象限交于A,B两点,A点的坐标为,B点的坐标为,连接,过B作轴,垂足为C.
(1)求一次函数和反比例函数的表达式;
(2)在射线上是否存在一点D,使得是直角三角形,求出所有可能的D点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为45°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走4米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两运动员的射击成绩(靶心为10环)统计如下表(不完全):
运动员 \ 环数 \ 次数 | 1 | 2 | 3 | 4 | 5 |
甲 | 10 | 8 | 9 | 10 | 8 |
乙 | 10 | 9 | 9 | a | b |
某同学计算出了甲的成绩平均数是9,方差是= [(10-9)2+(8-9)2+(9-9)2+(10-9)2+(8-9)2]=0.8,
请作答:
(1)若甲、乙射击成绩平均数都一样,则a+b= ;
(2)在(1)的条件下,当甲比乙的成绩较稳定时,请列举出a,b的所有可能取值,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C,D两点,D点在x轴下方且横坐标小于3,则下列结论中正确的是( )
A.a﹣b+c>0B.2a+b+c<0
C.D.a<﹣1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:
时间x(天) | 1≤x<50 | 50≤x≤90 |
售价(元/件) | x+40 | 90 |
每天销量(件) | 200-2x |
已知该商品的进价为每件30元,设销售该商品的每天利润为y元[
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com