精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是(
A.a>0
B.3是方程ax2+bx+c=0的一个根
C.a+b+c=0
D.当x<1时,y随x的增大而减小

【答案】B
【解析】解:A、因为抛物线开口向下,因此a<0,故此选项错误; B、根据对称轴为x=1,一个交点坐标为(﹣1,0)可得另一个与x轴的交点坐标为(3,0)因此3是方程ax2+bx+c=0的一个根,故此选项正确;
C、把x=1代入二次函数y=ax2+bx+c(a≠0)中得:y=a+b+c,由图象可得,y>0,故此选项错误;
D、当x<1时,y随x的增大而增大,故此选项错误;
故选:B.
根据抛物线的开口方向可得a<0,根据抛物线对称轴可得方程ax2+bx+c=0的根为x=﹣1,x=3;根据图象可得x=1时,y>0;根据抛物线可直接得到x<1时,y随x的增大而增大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两支“徒步队”到野外沿相同路线徒步,徒步的路程为24千米.甲队步行速度为4千米/时,乙队步行速度为6千米/时.甲队出发1小时后,乙队才出发,同时乙队派一名联络员跑步在两队之间来回进行一次联络(不停顿),他跑步的速度为10千米/时.

(1)乙队追上甲队需要多长时间?

(2)联络员从出发到与甲队联系上后返回乙队时,他跑步的总路程是多少?

(3)从甲队出发开始到乙队完成徒步路程时止,何时两队间间隔的路程为1千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1 000元;经粗加工后销售,每吨利润可达4 500元;经精加工后销售,每吨利润涨至7 500元.

当地一家蔬菜公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此公司制订了三种方案:

方案一:将蔬菜全部进行粗加工;

方案二:尽可能多的对蔬菜进行精加工,没有来得及进行加工的蔬菜,在市场上直接销售;

方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.

你认为选择哪种方案获利最多?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】□ABCD中,AC=6,BD=10,动点P从B出发以每秒1个单位的速度沿射线BD匀速运动,动点Q从D出发以相同速度沿射线DB匀速运动,设运动时间为t秒.

(1)当t =2时,证明以A、P、C、Q为顶点的四边形是平行四边形.

(2)当以A、P、C、Q为顶点的四边形为矩形时,直接写出t的值.

(3)设PQ=y,直接写出y与t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,将沿直线BC方向平移的位置,GDE上一点,连接AG,过点AD作直线MN

(1)求证:

(2)若,判断AGDE的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面的证明过程

如图,已知∠1+∠2=180°,∠B=∠DEF,求证:DE∥BC.

证明:∵∠1+∠2=180°(已知),

∠2=∠3________

∴∠1+∠3=180°

____________________

∴∠B=______________

∵∠B=∠DEF(已知)

∴∠DEF=______(等量代换)

∴DE∥BC________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图的数阵是由77个偶数排成:

(1)如图中任意作一个平行四边形框,设左上角的数为x,那么其他3个数从小到大可分别表示为   

(2)小红说这4个数的和是292,能求出这4个数吗?若存在,请求出这4个数.不存在说明理由.

(3)小明说4个数的和是420,存在这样的数吗?若存在,请求出这4个数,不存在说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】

1)请你根据图中AB两点的位置,分别写出它们所表示的有理数

A___________ B_____________

2)观察数轴,与点A的距离为4的点表示的数是:_____________

3)若将数轴折叠,使得A点与-3表示的点重合,则B点与数_ _表示的点重合;

4)若数轴上MN两点之间的距离为2014MN的左侧),且MN两点经过(3)中折叠后互相重合,则MN两点表示的数分别是: M: _______ N: _______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.
(1)求证:PA为⊙O的切线;
(2)若OB=5,OP= ,求AC的长.

查看答案和解析>>

同步练习册答案