精英家教网 > 初中数学 > 题目详情
如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8cm,BC=6cm.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图2所示).将纸片△AC1D1沿直线D2B(AB)方向平移(点A、D1、D2、B始终在同一直线上),当点A与点B重合时,停止平移.设平移的速度是1cm/秒,平移的时间为x(秒),△AC1D1与△BC2D2重叠部分面积为y(cm2).
(1)求CD的长和斜边上的高CH;
(2)在平移过程中(如图3),设C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.那么四边形FD2D1E是否可能是菱形?为什么?如果可能,请求出相应的D1E=D2F的值;
(3)请写出y与x的函数关系式,以及自变量的取值范围;
(4)是否存在这样的x的值,使重叠部分面积为3cm2?若存在,求出相应的x的值;若不存在,请说明理由.
【答案】分析:(1)根据勾股定理求出AB的值,由直角三角形斜边上的中线等于斜边的一半就可以求出CD的值,根据三角形的面积公式就可以求出CH的值;
(2)根据菱形的性质就可以得出当D2F=D2D1时就可以求出D1E=D2F的值;
(3)分情况讨论,如图3,当0≤x≤5时,如图4,当5<x≤10时,由三角形的面积公式就可以求出结论;
(4)当y=3时分别代入(3)的解析式就可以求出x的值.
解答:解:(1)∵∠ACB=90°,AC=8cm,BC=6cm,
∴在直角三角形ABC中,由勾股定理,得
AB=10.
∵D是AB的中点,
∴CD=AB=5.
AC•BC=AB•CH,
×6×8=CH,
∴CH=4.8;

(2)可能,当D2F=D2D1时,四边形FD2D1E是菱形.
∵C1D1∥C2D2
∴∠C1=∠AFD2
∵∠ACB=90°,CD是斜边上的中线,
∴DC=DA=DB,即C1D1=C2D2=BD2=AD1
∴∠C1=∠A,
∴∠AFD2=∠A,
∴AD2=D2F,同理:BD1=D1E,
∴AD2=BD1
∴D1E=D2F,
∵D1E∥D2F,
∴四边形FD2D1E是平行四边形.
∵D2F=D2D1
∴平行四边形FD2D1E是菱形.
∵AD2=x,
∴D2D1=5-x,
∴x=5-x,
∴x=2.5,
∴D1E=D2F=2.5;

(3)如图3,当0≤x≤5时,
∵D2D1=x
∴D1E=BD1=D2F=AD2=5-x,
∴C2F=C1E=x.
∵在△ABC中,sin∠CDB=
∴sin∠ED1B=
设△BED1的BD1边上的高为h,
∴h=
∴S△BD1E=×BD1×h=
∵∠C1+∠C2=90°,
∴∠FPC2=90°.
∵∠C2=∠B,
∴sin∠B=,cos∠B=
∴PC2=x,PF=x,
∴S△FC2P==x2
∴y=S△D2C2B-S△BD1E-S△ABC--=x2
∴y=-x2+x;
如图4,当5<x≤10时,
∵D2D1=x,BD2=AD1=5,
∴BD1=x-5,
∴AB=5-(x-5)=10-x.
∵sin∠PBA==,cos∠PBA==
∴PA=,PB=(10-x),
∴y=×PA×PB=××(10-x),
y=(10-x)2
综上可得:y=
(4)当0≤x≤5时,
-x2+x=3,
解得:x1=>5(舍去),x2=
当5<x≤10时,
(10-x)2=3,
解得:x1=10+>(舍去),x2=10-
∴当x=或x=10-时,重叠部分的面积等于3.
点评:本题考查了勾股定理的运用,直角三角形的性质的运用,菱形的判定及性质的运用,三角形面积公式的运用,三角函数的运用,分类讨论思想的运用,解答时求出函数的解析式是解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图所示).将纸片△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.
(1)当△AC1D1平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想;
(2)设平移距离D2D1为x,△AC1D1与△BC2D2重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;
(3)对于(2)中的结论是否存在这样的x的值使得y=
14
S△ABC;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8cm,BC=6cm.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图2所示).将纸片△AC1D1沿直线D2B(AB)方向平移(点A、D1、D2、B始终在同一直线上),当点A与点B重合时,停止平移.设平移的速度是1cm/秒,平移的时间为x(秒),△AC1D1与△BC2D2重叠部分面积为y(cm2).
(1)求CD的长和斜边上的高CH;
(2)在平移过程中(如图3),设C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.那么四边形FD2D1E是否可能是菱形?为什么?如果可能,请求出相应的D1E=D2F的值;
(3)请写出y与x的函数关系式,以及自变量的取值范围;
(4)是否存在这样的x的值,使重叠部分面积为3cm2?若存在,求出相应的x的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:第34章《二次函数》常考题集(24):34.4 二次函数的应用(解析版) 题型:解答题

如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图所示).将纸片△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.
(1)当△AC1D1平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想;
(2)设平移距离D2D1为x,△AC1D1与△BC2D2重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;
(3)对于(2)中的结论是否存在这样的x的值使得y=S△ABC;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(41):2.4 二次函数的应用(解析版) 题型:解答题

如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图所示).将纸片△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.
(1)当△AC1D1平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想;
(2)设平移距离D2D1为x,△AC1D1与△BC2D2重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;
(3)对于(2)中的结论是否存在这样的x的值使得y=S△ABC;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年广东省汕头市龙湖区中考数学模拟试卷(解析版) 题型:解答题

如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图所示).将纸片△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.
(1)当△AC1D1平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想;
(2)设平移距离D2D1为x,△AC1D1与△BC2D2重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;
(3)对于(2)中的结论是否存在这样的x的值使得y=S△ABC;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案