分析 (1)根据角平分线的性质,及∠BAC+∠BAF=180°可求出∠DAE=90°,即可证明DA⊥AE;
(2)因为AB=AC,若要证明AC=DE,可转化为证明AB=DE即可.
解答 (1)证明:∵AD平分∠BAC,
∴∠BAD=$\frac{1}{2}$∠BAC,
又∵AE平分∠BAF,
∴∠BAE=$\frac{1}{2}$∠BAF,
∵∠BAC+∠BAF=180°,
∴∠BAD+∠BAE=$\frac{1}{2}$(∠BAC+∠BAF)=90°,
即∠DAE=90°,
故DA⊥AE;
(2)解:AB=DE,
理由:∵AB=AC,AD平分∠BAC,
∴AD⊥BC,故∠ADB=90°
∵BE⊥AE,
∴∠AEB=90°,∠DAE=90°,
故四边形AEBD是矩形.
∴AB=DE.
点评 本题考查的是角平分线,等腰三角形的性质及矩形的判定定理.有一定的综合性.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
x | … | -$\frac{1}{2}$ | 0 | 1 | $\frac{3}{2}$ | 2 | $\frac{5}{2}$ | 3 | 4 | $\frac{9}{2}$ | … |
y | … | -$\frac{113}{16}$ | -3 | 1 | $\frac{27}{16}$ | 2 | $\frac{37}{16}$ | 3 | 7 | $\frac{177}{16}$ | … |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 对角线相等的四边形是矩形 | |
B. | 对角线互相垂直的四边形是菱形 | |
C. | 两条对角线互相平分且相等的四边形是正方形 | |
D. | 顺次连接四边形的各边中点所得的四边形是平行四边形 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com