精英家教网 > 初中数学 > 题目详情

【题目】平面直角坐标系中,正方形OABC如图放置,反比例函数的图像交AB于点D,交BC于点E,已知A0),∠DOE=30°,则k的值为(

A.B.C.3D.3

【答案】B

【解析】

由四边形ABCO是正方形,得到OC=OA,∠OCB=OAD=90°,设D),E),求得CE=AD=,根据全等三角形的性质得到∠COE=AOD,根据直角三角形的性质得到D的坐标,即可得到答案;

解:∵四边形ABCO是正方形,
OC=OA,∠OCB=OAD=90°,

A0),

D),E),

CE=AD=

∴△COE≌△AODSAS),
∴∠COE=AOD
∵∠DOE=30°,∠AOC=90°,
∴∠AOD=COE=30°,

D1),

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图, 中, 中点, 在边上, 连接,过点

于点,连接。下列结论:

1234

其中正确的是__________(填写所有正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解朝阳社区岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:

(1)求参与问卷调查的总人数.

(2)补全条形统计图.

(3)该社区中岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线yx2+x+3x轴交于AB两点(点A在点B的右侧),与y轴交于点C,过点Cx轴的平行线交抛物线于点P.连接AC

1)求点P的坐标及直线AC的解析式;

2)如图2,过点Px轴的垂线,垂足为E,将线段OE绕点O逆时针旋转得到OF,旋转角为αα90°),连接FAFC.求AF+CF的最小值;

3)如图3,点M为线段OA上一点,以OM为边在第一象限内作正方形OMNG,当正方形OMNG的顶点N恰好落在线段AC上时,将正方形OMNG沿x轴向右平移,记平移中的正方形OMNG为正方形OMNG,当点M与点A重合时停止平移.设平移的距离为t,正方形OMNG的边MNAC交于点R,连接OPORPR,是否存在t的值,使OPR为直角三角形?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,以AB为直径的半圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FBFC

1)求证:四边形ABFC是菱形;

2)若AD=BE=1,求半圆的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,以AB为直径的半圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FBFC

1)求证:四边形ABFC是菱形;

2)若AD=BE=1,求半圆的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的边长AB3cmAC3 cm,动点M从点A出发,沿AB1cm/s的速度向点B匀速运动,同时动点N从点D出发,沿DA2cm/s的速度向点A匀速运动.若△AMN与△ACD相似,则运动的时间t_____s

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线轴交于点,顶点为M

1)求抛物线的解析式和点M的坐标;

2)点E是抛物线段BC上的一个动点,设的面积为S,求出S的最大值,并求出此时点E的坐标;

3)在抛物线的对称轴上是否存在点P,使得以APC为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,已知O上一点,A点.

(Ⅰ)如图①,若的半径为6,求线段的长;

(Ⅱ)如图②,E点,过E点作于点D,若,求的长.

查看答案和解析>>

同步练习册答案