【题目】如图,在等边中,是边上一点,连接,将绕点逆时针旋转得到,连接,若,,则有以下四个结论:①是等边三角形;②;③的周长是10;④.其中正确结论的序号是( )
A.②③④B.①③④C.①②④D.①②③
【答案】D
【解析】
先由△BCD绕点B逆时针旋转60°,得到△BAE,可知:BD=BE,∠DBE=60°,则可判断△BDE是等边三角形;根据等边三角形的性质得BA=BC,∠ABC=∠C=∠BAC=60°,再根据旋转的性质得到∠BAE=∠BCD=60°,从而得∠BAE=∠ABC=60°,根据平行线的判定方法即可得到AE∥BC;根据等边三角形的性质得∠BDE=60°,而∠BDC>60°,则可判断∠ADE≠∠BDC;由△BDE是等边三角形得到DE=BD=4,再利用△BCD绕点B逆时针旋转60°,得到△BAE,则AE=CD,△AED的周长=AE+AD+DE=CD+AD+DE=AC+BD=BC+BD=10.
∵△BCD绕点B逆时针旋转60°,得到△BAE,
∴BD=BE,∠DBE=60°,
∴△BDE是等边三角形,
∴①正确;
∵△ABC为等边三角形,
∴BA=BC,∠ABC=∠C=∠BAC=60°,
∵△BCD绕点B逆时针旋转60°,得到△BAE,
∴∠BAE=∠BCD=60°,
∴∠BAE=∠ABC,
∴AE∥BC,
∴②正确;
∵△BDE是等边三角形,
∴DE=BD=4,
∵△BCD绕点B逆时针旋转60°,得到△BAE,
∴AE=CD,
∴△AED的周长=AE+AD+DE=CD+AD+DE=AC+BD=BC+BD=6+4=10,
∴③正确;
∵△BDE是等边三角形,
∴∠BDE=60°,
∵∠BDC=∠BAC+∠ABD>60°,
∴∠ADE=180°-∠BDE-∠BDC<60°,
∴∠ADE≠∠BDC,
∴④错误.
故选D.
科目:初中数学 来源: 题型:
【题目】(本题7分)如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度.他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为 (即AB:BC=),且B、C、E三点在同一条盲线上。请根据以上杀件求出树DE的高度(测倾器的高度忽略不计).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC内接于⊙O,AC是⊙O的直径,D是的中点.过点D作CB的垂线,分别交CB、CA延长线于点F、E.
(1)判断直线EF与⊙O的位置关系,并说明理由;
(2)若CF=6,∠ACB=60°,求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,点D在边BC上,点E在边AC上,且AD=AE.
(1)如图1,当AD是边BC上的高,且∠BAD=30°时,求∠EDC的度数;
(2)如图2,当AD不是边BC上的高时,请判断∠BAD与∠EDC之间的关系,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.
(1)已知点A(1,0),B(0,),则以AB为边的“坐标菱形”的最小内角为______;
(2)若点C(2,1),点D在直线y=5上,以CD为边的坐标菱形”为正方形,求育直线CD表达式;
(3)⊙O的半径为,点P的坐标为(3,m),若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在边长为3的正方形ABCD中,点E、F、G、H分别在AB、BC、CD、DA边上,且满足EB=FC=GD=HA=1,BD分别与HG、HF、EF相交于M、O、N给出以下结论:
①HO=OF;②OF2=ONOB;③HM=2MG;④S△HOM=,其中正确的个数有( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点P是菱形ABCD的对角线BD上的一动点,连接CP并延长交AD于E,交BA的延长线于点F.
(1)求证:△APD≌△CPD;
(2)如图2,当菱形ABCD变为正方形,且PC=2,tan∠PFA=时,求正方形ABCD的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于任意三个实数a,b,c,用min|a,b,c|表示这三个实数中最小数,例如:min|-2,0,1|=-2,则:
(1)填空,min|(-2019)0,(-)-2,-|=______,如果min|3,5-x,3x+6|=3,则x的取值范围为______;
(2)化简:÷(x+2+)并在(1)中x的取值范围内选取一个合适的整数代入求值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2﹣(2a+1)x+c(a>0)的图象经过坐标原点O,一次函数y=﹣x+4与x轴、y轴分别交于点A、B.
(1)c= ,点A的坐标为 ;
(2)若二次函数y=ax2﹣(2a+1)x+c的图象经过点A,求a的值;
(3)若二次函数y=ax2﹣(2a+1)x+c的图象与△AOB只有一个公共点,直接写出a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com