精英家教网 > 初中数学 > 题目详情
如图1,在正方形ABCD内有一点P,PA=
5
,PB=
2
,PC=1,求∠BPC的度数.
【分析问题】根据已知条件比较分散的特点,我们可以通过旋转变换将分散的已知条件集中在一起,于是将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连结PP′.
【解决问题】请你通过计算求出图2中∠BPC的度数;
【比类问题】如图3,若在正六边形ABCDEF内有一点P,且PA=2
13
,PB=4,PC=2.
(1)∠BPC的度数为
120°
120°
; 
(2)直接写出正六边形ABCDEF的边长为
2
7
2
7

分析:【解决问题】如图4,将△PBC逆时针旋转90°得△P′BA,连接PP′,就可以求得∠P′BP=90°,P′B=PB,求出∠BP′P的度数,由勾股定理就可以求出PP′的值,在△P′AP中由勾股定理的逆定理可以得出△P′AP是直角三角形,求出∠PP′A的度数,从而可以求出结论;
(1)仿照【分析】中的思路,将△BPC绕点B逆时针旋转120°,得到了△BP′A,然后连结PP′.如图所示,根据旋转的性质可得:△PBC≌△P′BA,从而得出△BPP′为等腰三角形,PB=P′B=4,PC=P′A=2,∠BPC=∠BP′A,由∠ABC=120°,就有∠PBP′=120°,∠BP′P=30°,可以求得PP′=4
3
,由勾股定理的逆定理就可以求出∠AP′P=90°从而得出结论;
(2)延长A P′作BG⊥AP′于点G,在Rt△P′BG中,P′B=4,∠BP′G=60°,就可以得出P′G=2,BG=2
3
,则AG=P′G+P′A=2+2=4,在Rt△ABG中,根据勾股定理得AB=2
7
解答:解:【解决问题】如图4,将△PBC逆时针旋转90°得△P′BA,连接PP′,
∴△AP′B≌△CPB,
∴P′B=PB=
2
,P′A=PC=1,∠1=∠2.∠AP′B=∠BPC.
∵四边形ABCD是正方形,
∴AB=BC,∠ABC=90°,
∴∠1+∠3=90°,
即∠P′BP=90°.
∴∠BP′P=45°.
在Rt△P′BP中,由勾股定理,得
PP′2=4.
∵P′A=1,AP=
5

∴P′A2=1,AP2=5,
∴P′A2+PP′2=AP2
∴△P′AP是直角三角形,
∴∠AP′P=90°.
∴∠AP′B=45°+90°=135°,
∴∠BPC=135°;

(1)仿照【分析】中的思路,将△BPC绕点B逆时针旋转120°,得到了△BP′A,连结PP′.如图5,
∴△PBC≌△P′BA,
∴P′B=PB=4,PC=P′A=2,∠BPC=∠BP′A,
∴△BPP′为等腰三角形,
∵∠ABC=120°,
∴∠PBP′=120°,
∴∠BP′P=30°,
作BG⊥PP′于G,
∴∠P′GB=90°,PP′=2P′G.
∵P′B=PB=4,∠BP′P=30°,
∴BG=2,
∴P′G=2
3

∴PP′=4
3

在△APP′中,∵PA=2
13
,PP′=4
3
,P′A=2,
∴PA2=52,PP′2=48,P′A2=4,
∴P′A2+P′P2=PA2
∴△PP′A是直角三角形,
∴∠AP′P=90°.
∴∠BPC=∠BP′A=30°+90°=120°.

(2)延长A P′作BG⊥AP′于点G,如图6,
在Rt△P′BG中,P′B=4,∠BP′G=60°,
∴P′G=2,BG=2
3

∴AG=P′G+P′A=2+2=4,
在Rt△ABG中,根据勾股定理得AB=2
7

故答案为:120°;2
7
点评:本题是一道四边形的综合试题,考查了旋转在正多边形中的运用,全等三角形的判定及性质的运用,勾股定理的运用,勾股定理的逆定理的运用,等腰三角形的性质的运用,解答本题时运用等腰三角形的性质解答是关键
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、把正方形OFGE纸板按如图①方式放置在正方形纸板ABCD上,顶点G在对角线AC,并把正方形OFGE绕顶点A沿逆时针方向旋转,旋转角为а.
(1)如图②,当а=90°时,请直接写出线段DE与BF的数量关系和位置关系;
(2)如图③,当0°<а<90°时,(1)中的结论是否发生改变?若不变,请给出证明.若发生改变,请举例说明;
(3)如图④,将图①、图③中的两个正方形都改为矩形,其他条件不变,设AB=kAD(k>0),当0°<а<90°时,(1)中的结论是否发生改变?若不变,请给出证明.若发生改变,请写出改变后的新结论,并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)填空:如图1,在正方形PQRS中,已知点M、N分别在边QR、RS上,且QM=RN,连接PN、SM相交于点O,则∠POM=
 
度;
(2)如图2,在等腰梯形ABCD中,已知AB∥CD,BC=CD,∠ABC=60度.以此为部分条件,精英家教网构造一个与上述命题类似的正确命题并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

26、如图1,在正方形ABCD中,若点E是△DBC内的一点,且DE=DC,BE=CE.
(1)连接AE.说明△ABE≌△DCE的理由;
(2)求∠BDE与∠CDE度数的比值;
(3)拓展探索:若只将题中的条件“正方形ABCD”换成条件“梯形ABCD中,AD∥BC,AB=DC,2∠DBC=∠DCB”.如图2,研究∠BDE与∠CDE度数的比值是否与(2)中的结论相同,写出你的研究结果并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图1,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD于点F.
(1)求证:EF+
1
2
AC=AB;
(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1与A1的运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动.如图2,A1F1平分∠BA1C1,交BD于点F1,过点F1作F1E1⊥A1C1,垂足为E1,请猜想E1F1
1
2
A1C1与AB三者之间的数量关系,并证明你的猜想;
(3)在(2)的条件下,当A1E1=3,C1E1=2时,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

课本练习拓展:
(1)如图1,在正方形ABCD中,E是BC上的一点,△ABE经过旋转后得到△ADF,
①旋转中心是点
A
A
;旋转角度最少是
90
90
度.
②爱动脑筋的小兵,在CD边上取点H使得∠HAE=45°,他发现:HE=BE+HD,他的发现正确吗?请你判断并说明理由.
(2)思维闯关:
如图2,在直角梯形ABCD中AD∥BC(BC>AD),∠B=90°BC=AB=6,E是 AB上一点,且∠DCE=45°,BE=2,则DE的长=
5
5
.(小兵运用解答(1)中所积累的经验和知识做出了该题)
(3)动手闯过:
①小明有一块如图3所示的纸片,其中∠A=∠C=90°,AB=AD.小明请小兵只剪一刀后把它拼成正方形,请你帮助小兵在图中画出剪拼得示意图.
②小兵好朋友小红现有两块同小明一样的纸片,如图4,小兵能否在每块上各剪一刀,然后拼成一个大的正方形?若能,请你画出剪法和拼法的示意图;若不能,简要说明理由.

查看答案和解析>>

同步练习册答案