14£®Èçͼ1£¬ÔÚ¡ÏAOBÖУ¬OCÊÇ¡ÏAOBÄÚ²¿ÈÎÒâÒ»ÌõÉäÏߣ¬ON¡¢OM·Ö±ðƽ·Ö¡ÏAOCºÍ¡ÏBOC£®
£¨1£©Èô¡ÏAOB=100¡ã£¬Çó¡ÏMONµÄ¶ÈÊý£®
£¨2£©Èô¡ÏAOB=¨»£¬Ö±½Óд³ö¡ÏMONµÄ¶ÈÊý=$¡ÏMON=\frac{1}{2}¦Á$£¨½á¹ûÓú¬¦ÁµÄ´úÊýʽ±íʾ£©£®
£¨3£©ÈôÉäÏßOCÔÚ¡ÏAOBÍⲿ£¨¡ÏBOC£¼180¡ã£©£¬ÆäËüÌõ¼þ²»±ä£¬Èçͼ2Ëùʾ£¬¡ÏAOB=¦Á£¬Çó¡ÏMONµÄ¶ÈÊý£¨½á¹ûÓú¬¦ÁµÄ´úÊýʽ±íʾ£©£®

·ÖÎö £¨1£©ÏÈÀûÓýÇƽ·ÖÏßµÄÐÔÖʵõ½¡ÏCON=$\frac{1}{2}$¡ÏAOC£¬¡ÏCOM=$\frac{1}{2}$¡ÏBOC£¬ÔÙÀûÓáÏMON=¡ÏCOM+¡ÏCON¼ÆË㣻
£¨2£©¸ù¾Ý£¨1£©µÄ½áÂÛ£¬¼´¿É½â´ð£»
£¨3£©ÏÈÀûÓýÇƽ·ÖÏßµÄÐÔÖʵõ½¡ÏCON=$\frac{1}{2}$¡ÏAOC£¬¡ÏCOM=$\frac{1}{2}$¡ÏBOC£¬ÔÙÀûÓáÏMON=¡ÏCOM-¡ÏCON¼ÆË㣬¼´¿É½â´ð£®

½â´ð ½â£º£¨1£©¡ßOMƽ·Ö¡ÏBOC£¬ONƽ·Ö¡ÏAOC£¬
¡à¡ÏCON=$\frac{1}{2}$¡ÏAOC£¬¡ÏCOM=$\frac{1}{2}$¡ÏBOC£¬
ËùÒÔ¡ÏMON=¡ÏCOM+¡ÏCON=$\frac{1}{2}$¡ÏBOC+$\frac{1}{2}$¡ÏAOC=$\frac{1}{2}$£¨¡ÏBOC+¡ÏAOC£©=$\frac{1}{2}¡ÏAOB$=50¡ã£»
£¨2£©¸ù¾Ý£¨1£©µÄ½áÂۿɵãº$¡ÏMON=\frac{1}{2}¦Á$£»
¹Ê´ð°¸Îª£º$¡ÏMON=\frac{1}{2}¦Á$£»
£¨3£©¡ßOMƽ·Ö¡ÏBOC£¬ONƽ·Ö¡ÏAOC£¬
¡à¡ÏCON=$\frac{1}{2}$¡ÏAOC£¬¡ÏCOM=$\frac{1}{2}$¡ÏBOC£¬
ËùÒÔ¡ÏMON=¡ÏCOM-¡ÏCON=$\frac{1}{2}$¡ÏBOC-$\frac{1}{2}$¡ÏAOC=$\frac{1}{2}$£¨¡ÏBOC-¡ÏAOC£©=$\frac{1}{2}¡ÏAOB$=$\frac{1}{2}$¦Á£®

µãÆÀ ´ËÌ⿼²éÁ˽ǵļÆË㣬ÒÔ¼°½Çƽ·ÖÏߣ¬½â¾ö±¾ÌâµÄ¹Ø¼üÊÇÀûÓýǵĺÍÓë²î£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®·½³Ì×é$\left\{\begin{array}{l}{x+y=2}\\{2x-y=1}\end{array}\right.$µÄ½âÊÇ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{x=-1}\\{y=3}\end{array}\right.$B£®$\left\{\begin{array}{l}{x=-2}\\{y=4}\end{array}\right.$C£®$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$D£®$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬¡÷ABCÖУ¬BC=2AB£¬µãD¡¢E·Ö±ðÊÇBC¡¢ACµÄÖе㣬¹ýµãA×÷AF¡ÎBC½»Ï߶ÎDEµÄÑÓ³¤ÏßÓÚµãF£¬È¡AFµÄÖеãG£¬Áª½áDG£¬GDÓëAE½»ÓÚµãH£®
£¨1£©ÇóÖ¤£ºËıßÐÎABDFÊÇÁâÐΣ»
£¨2£©ÇóÖ¤£ºDH2=HE•HC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®µ±a+b=$\frac{3}{2}$£¬ab=$\frac{1}{2}$ʱ£¬´úÊýʽ4a2b+4ab2µÄÖµÊÇ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Èçͼ£¬Ï߶ÎABµÄ³¤Îª10£¬CΪABÉϵÄÒ»¸ö¶¯µã£¬·Ö±ðÒÔAC¡¢BCΪб±ßÔÚABµÄͬ²à×÷Á½¸öµÈÑüÖ±½Ç¡÷ACDºÍ¡÷BCE£¬ÄÇôDE³¤µÄ×îСֵÊÇ5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Ò»¸öÕý·½ÐκÍÁ½¸öµÈ±ßÈý½ÇÐεÄλÖÃÈçͼËùʾ£¬Èô¡Ï3=60¡ã£¬Ôò¡Ï1+¡Ï2=£¨¡¡¡¡£©
A£®180¡ãB£®100¡ãC£®90¡ãD£®80¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖª£ºÔÚRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬¡ÏA=60¡ã£¬a=$\sqrt{6}$£¬Çób¡¢cµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®£¨1£©Èçͼ1£¬ÔÚÕý·½ÐÎABCDÖУ¬EÊÇABÉÏÒ»µã£¬FÊÇADÑÓ³¤ÏßÉÏÒ»µã£¬ÇÒDF=BE£®ÇóÖ¤£ºCE=CF£®
£¨2£©Èçͼ2£¬ÔÚÕý·½ÐÎABCDÖУ¬EÊÇABÉÏÒ»µã£¬GÊÇADÉÏÒ»µã£¬Èç¹û¡ÏGCE=45¡ã£¬ÇëÄãÀûÓã¨1£©µÄ½áÂÛÖ¤Ã÷£ºGE=BE+GD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®·Ö½âÒòʽ£º
£¨1£©3x2-6x£»
£¨2£©a3-4ab2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸