精英家教网 > 初中数学 > 题目详情

【题目】
(1)解方程: + =2
(2)如图,在⊙O中,OA⊥OB,∠A=20°,求∠B的度数.

【答案】
(1)解:去分母得,1﹣(x+2)=2(x﹣2),

去括号得,1﹣x﹣2=2x﹣4,

移项得,﹣x﹣2x=﹣4﹣1+2,

合并同类项得,﹣3x=﹣3,

系数化为1得,x=1,

经检验,x=1是原方程的解


(2)解:连接OC,

∵OA⊥OB,

∴∠AOB=90°,

∴∠ACB=45°.

又∴OA=OC,∠A=20°,

∴∠ACO=20°,

∴∠OCB=25°.

又∵OC=OB

∴∠B=25°.


【解析】(1)先把分式方程化为整式方程,求出x的值,再代入最简公分母进行检验即可;(2)连接OC,先根据圆周角定理求出∠ACB的度数,再由等腰三角形的性质求出∠ACO的度数,进而可得出∠BCO的度数,据此可得出结论.
【考点精析】通过灵活运用去分母法和圆周角定理,掌握先约后乘公分母,整式方程转化出.特殊情况可换元,去掉分母是出路.求得解后要验根,原留增舍别含糊;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(本题10分)某自行车厂一周计划生产700辆自行车,平均每天生产自行车100辆,由于各种原因,实际每天生产量与计划每天生产量相比有出入。下表是某周的自行车生产情况(超计划生产量为正、不足计划生产量为负,单位:辆):

星期

增减

+8

-2

-3

+16

-9

+10

-11

(1)根据记录可知前三天共生产自行车 辆;

(2)产量最多的一天比产量最少的一天生产 辆;

(3)若该厂实行按生产的自行车数量的多少计工资,即计件工资制。如果每生产一辆自行车就可以得人民币60 元,超额完多成任务,每超一辆可多得 15 元;若不足计划数的,每少生产一辆扣 15 元,那么该厂工人这一周的工资总额是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列等式:

第一个等式:a1==-

第二个等式:a2==-

第三个等式:a3==-

第四个等式:a4==-

按上述规律,回答下列问题:

(1)请写出第六个等式:a6=_____=_____

(2)用含n的代数式表示第n个等式:an=_____=_____

(3)a1+a2+a3+a4+a5+a6=_____(得出最简结果);

(4)计算:a1+a2++an

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:CD是⊙O的直径,线段AB过圆心O,且OA=OB= ,CD=2,连接AC、AD、BD、BC、AD、CB分别交⊙O于E、F.
(1)问四边形CEDF是何种特殊四边形?请证明你的结论;
(2)当AC与⊙O相切时,四边形CEDF是正方形吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形ABCD中,点E、F分别在边CD、AB上,且DE=BF,ECA=FCA.

(1)求证:四边形AFCE是菱形;

(2)若AB=8,BC=4,求菱形AFCE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠B=90°,C=30°,AC=48,点D从点C出发沿CA方向以每秒4个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒2个单位长的速度向点B匀速运动,当其中一个点到达终点,另一个点也随之停止运动,设点D、E运动的时间是t秒(t>0),过点DDFBC于点F,连接DE、EF.

(1)求证:AE=DF;

(2)当四边形BFDE是矩形时,求t的值;

(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.×

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某体育老师对自己任教的55名男生进行一百米摸底测试,若规定男生成绩为16秒合格,下表是随机抽取的10名男生分A、B两组测试的成绩与合格标准的差值(比合格标准多的秒数为正,少的秒数为负).

A 组

﹣1.5

+1.5

﹣1

﹣2

﹣2

B组

+1

+3

﹣3

+2

﹣3


(1)请你估算从55名男生中合格的人数大约是多少?
(2)通过相关的计算,说明哪个组的成绩比较均匀;
(3)至少举出三条理由说明A组成绩好于B组成绩,或找出一条理由来说明B组好于A组.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,点D、E分别在边AC、BC上(不与点A、B、C重合),点P是直线AB上的任意一点(不与点A、B重合).设∠PDA=x,∠PEB=y,∠DPE=m,∠C=n.

(1)如图,当点P在线段AB上运动,且n=90°时

①若PD∥BC,PE∥AC,则m=_____

②若m=50°,求x+y的值.

(2)当点P在直线AB上运动时,直接写出x、y、m、n之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化简求值:

(1),其中

(2)若,且,求的值。

查看答案和解析>>

同步练习册答案