精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,AB=2,BC=3,M为BC中点,连接AM,过D作DE⊥AM于E,则DE的长度为(
A.2
B.
C.
D.

【答案】B
【解析】解:在矩形ABCD中, ∵M是边BC的中点,BC=3,AB=2,
∴AM= = =
∵AD∥BC,
∴∠DAE=∠AMB,
∵∠DEA=∠B=90°,
∴△DAE∽△AMB,


∴DE=
故选:B.
【考点精析】本题主要考查了矩形的性质和相似三角形的判定与性质的相关知识点,需要掌握矩形的四个角都是直角,矩形的对角线相等;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).

(1)若△ABC经过平移后得到△A1B1C1 , 已知点C1的坐标为(4,0),写出顶点A1 , B1的坐标,并画出△A1B1C1
(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;
(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3 , 写出△A3B3C3的各顶点的坐标,并画出△A3B3C3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.
(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.求证:△AGE≌△AFE;
(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,点P是BC的中点,仅用无刻度的直尺按要求画图:
(1)在图①中画出AD的中点M;
(2)在图②中画出对角线AC的三等分点E,点F.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BO、CO分别平分∠ABC、ACB.若∠BOC=110°,则∠A=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE. 求证:四边形BCDE是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店销售甲、乙两种商品,现有如下信息: 请结合以上信息,解答下列问题:
(1)求甲、乙两种商品的进货单价;
(2)已知甲、乙两种商品的零售单价分别为2元、3元,该商店平均每天卖出甲商品500件和乙商品1300件,经市场调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m(m>0)元,在不考虑其他因素的条件下,求当m为何值时,商店每天销售甲、乙两种商品获取的总利润为1800元(注:单件利润=零售单价﹣进货单价)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.

种类

A

B

C

D

E

出行方式

共享单车

步行

公交车

的士

私家车

根据以上信息,回答下列问题:

(1)参与本次问卷调查的市民共有 人,其中选择B类的人数有 人;

(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;

(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知EFG≌△NMH, FM是对应角.

1)写出相等的线段与相等的角;

2)若EF=2.1cmFH=1.1cmHM=3.3cm,求MNHG的长度.

查看答案和解析>>

同步练习册答案