【题目】已知在扇形AOB中,圆心角∠AOB=120°,半径OA=OB=8.
(1)如图1,过点O作OE⊥OB,交弧AB于点E,再过点E作EF⊥OA于点F,求FO的长,∠FEO的度数;
(2)如图2,设点P为弧AB上的动点,过点P作PM⊥OA于点M,PN⊥OB于点N,点M,N分别在半径OA,OB上,连接MN,则
①求点P运动的路径长是多少?
②MN的长度是否是定值?如果是,请求出这个定值;若不是,请说明理由;
(3)在(2)中的条件下,若点D是△PMN的外心,直接写出点D运动的路经长.
【答案】(1)OF=4,∠FEO=60°,(2)①点P运动的路径长为;②MN=4,是定值;(3)点D运动的路经长为.
【解析】
(1)先求出∠AOE,即可得出结论;
(2)①当点M与点O重合时,∠PMB=30°,当点N与点O重合时,∠PNA=30°,进而求出点P运动路径所对的圆心角是120°﹣30°﹣30°=60°,最后用弧长公式即可得出结论;
②先判断出点P,M,O,N四点均在同一个圆,即⊙H上,进而求出MK=2,即可得出结论;
(3)先判断出三角形PMN的外接圆的圆心的运动轨迹,最后根据弧长公式即可得出结论.
(1)∵OE⊥OB,
∴∠BOE=90°,
∵∠AOB=120°,
∴∠AOE=30°,
∵EF⊥OA,
∴∠EFO=90°,
在Rt△EFO中,OE=OB=8.
∴OF=OEcos30°=4,∠FEO=90°﹣30°=60°,
故答案为:4,60;
(2)①点P在弧AB上运动,其路径也是一段弧,由题意可知,
当点M与点O重合时,∠PMB=30°,
当点N与点O重合时,∠PNA=30°,
∴点P运动路径所对的圆心角是120°﹣30°﹣30°=60°,
∴点P运动的路径长=;
②是定值;
如图1,连接PO,取PO的中点H,连接MH,NH,
∵在Rt△PMO和Rt△PNO中,点H是斜边PO的中点,
∴MH=NH=PH=OH=PO=4,
∴根据圆的定义可知,点P,M,O,N四点均在同一个圆,即⊙H上,
又∵∠MON=120°,∠PMO=∠PNO=90°,
∴∠MPN=60°,∠MHN=2∠MPN=120°,
过点H作HK⊥MN,垂足为点K,
由垂径定理得,MK=KN=MN,
∴在Rt△HMK中,∠MHK=60°,MH=4,则MK=2,
∴MN=2MK=4,是定值.
(3)由(2)知,点P,M,O,N四点共圆,
∴H是△PMN的外接圆的圆心,
即:点H和点D重合,
∴OD=PD,
∴点D是以点O为圆心OP=4为半径,
∵点P运动路径所对的圆心角是120°﹣30°﹣30°=60°,
∴点D运动路径所对的圆心角是120°﹣30°﹣30°=60°,
∴点D运动的路经长为.
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,BC=4,对角线AC、BD相交于点O,现将一个直角三角板OEF的直角顶点与O重合,再绕着O点转动三角板,并过点D作DH⊥OF于点H,连接AH.在转动的过程中,AH的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD的对角线AC,BD交于O,EF过点O与AD,BC分别交于E,F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.
(1)第一次购书的进价是多少元?
(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,BC=2,AC=6,在AC上取一点D,使AD=4,将线段AD绕点A按顺时针方向旋转,点D的对应点是点P,连接BP,取BP的中点F,连接CF,当点P旋转至CA的延长线上时,CF的长是_____,在旋转过程中,CF的最大长度是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是圆O的直径,点C、D在圆O上,且AD平分∠CAB.过点D作AC的垂线,与AC的延长线相交于E,与AB的延长线相交于点F.
求证:EF与圆O相切.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明周末要乘坐公交车到植物园游玩,从地图上查找路线发现,几条线路都需要换乘一次.在出发站点可选择空调车A、空调车B、普通车a,换乘站点可选择空调车C,普通车b、普通车c,且均在同一站点换乘.空调车投币2元,普通车投币1元.
(1)求小明在出发站点乘坐空调车的概率;
(2)求小明到达植物园恰好花费3元公交费的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数的图象y=经过A,B两点,菱形ABCD的面积为4,则k的值为( )
A. 3B. 2C. 2D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.
(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?
(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com