精英家教网 > 初中数学 > 题目详情

【题目】如图,一架2.5米长的梯子AB 斜靠在一座建筑物上,梯子底部与建筑物距离BC 为0.7米.

(1)求梯子上端A到建筑物的底端C的距离(即AC的长);

(2)如果梯子的顶端A沿建筑物的墙下滑0.4米(即AA=0.4米),则梯脚B将外移(即BB的长)多少米?

【答案】(1)梯子上端A到建筑物的底端C的距离为2.4米;(2)梯脚B将外移0.8米.

【解析】

(1)在RtABC中利用勾股定理求出AC的长即可;

(2)由(1)可以得出梯子的初始高度,下滑0.4米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的底端距离墙的距离为0.7米,可以得出,梯子底端水平方向上滑行的距离.

(1)在△ABC中,∠ACB=90°,AB=2.5,BC=0.7

根据勾股定理可知AC=

答:梯子上端A到建筑物的底端C的距离为2.4米.

(2)在△AˊBˊC中,∠ACB=90°,AˊBˊ=AB=2.5米, AˊC=AC-AAˊ=2.4-0.4=2米

根据勾股定理可知BˊC=

答:梯脚B将外移0.8米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】题目:如图,在△ABC中,点DBC边上一点,连结AD,若AB=10,AC=17,BD=6,AD=8,解答下列问题:

(1)求∠ADB的度数;

(2)求BC的长.

小强做第(1)题的步骤如下:∵AB2BD2+AD2

∴△ABD是直角三角形,∠ADB=90°.

(1)小强解答第(1)题的过程是否完整,如果不完整,请写出第(1)题完整的解答过程

(2)完成第(2)题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】转化是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.

(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;

(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F的度数;

(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于m的方程m-16=7的解也是关于x的方程2x-3-n=52的解.

1)求mn的值;

2)已知∠AOB=m°,在平面内画一条射线OP,恰好使得∠AOP=nBOP,求∠BOP

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A23),点B﹣21),在x轴上存在点PAB两点的距离之和最小,则P点的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(1)∣—6+(3.14)0()-2+(2)3 (2)(-a)3a2+(2a4)2÷a3.

(3) (4)(a-2b)(a+b)3a(a+b)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电器超市销售每台进价分别为200,170元的A,B两种型号的电风扇表中是近两周的销售情况:

销售时段

销售数量

销售收入

A种型号

B种型号

第一周

3

5

1800

第二周

4

10

3100

(进价、售价均保持不变利润=销售收入-进货成本)

(1)A,B两种型号的电风扇的销售单价.

(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30A种型号的电风扇最多能采购多少台?

(3)(2)的条件下超市销售完这30台电风扇能否实现利润为1400元的目标?若能请给出相应的采购方案;若不能请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列情境①分别可以用哪幅图来近似地刻画?正确的顺序是(

①一杯越来越凉的水(水温与时间的关系);②一面冉冉升起的旗子(高度与时间的关系);③足球守门员大脚开出去的球(高度与时间的关系);④匀速行驶的汽车(速度与时间的关系).

A. cdabB. acbdC. dabcD. cbad

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某人到岛上去探宝,从A处登陆后先往东走4 km,又往北走1.5 km,遇到障碍后又往西走2 km,再折回向北走到4.5 km处往东一拐,仅走0.5 km就找到宝藏.问登陆点A与宝藏埋藏点B之间的距离是多少?

查看答案和解析>>

同步练习册答案