精英家教网 > 初中数学 > 题目详情

如图,在直角三角形ABC中,∠ACB=90°,∠B=30°,DE是△ABC的中位线,以C为圆心CD为半径作圆.
(1)求证:AB是圆的切线.
(2)延长DE到F使EF=2DE;连接CE、AF.求证:四边形ACEF是菱形.

证明:(1)如图1,作 CG⊥AB交AB于G. (1分)
∵∠AGC=90°,∠B=30°
∴CG=BC=CD(2分)
∴AB是圆的切线. (3分)

(2)如图2,
∵∠ACB=90°,DE是△ABC的中位线,
∴DE∥AC,即EF∥AC
∵DE=AC=EF,(4分)
∴EF=AC,
∴四边形ACEF是平行四边形; (5分)
又∵CE=BE=AE,∠B=30°,
∴∠BCE=30°,
∴∠ECA=60°,
∴△ECA是等边三角形
∴CE=AC,
∴四边形ACEF是菱形. (6分)
分析:(1)过点C作 CG⊥AB交AB于G.欲证AB是圆的切线,只需证明CD=CG即可;
(2)首先利用三角形中位线定理推知四边形ACEF是平行四边形;然后利用等边三角形的判定推知CE=CA;最后由菱形的判定定理(邻边相等的平行四边形是菱形)证得结论.
点评:本题综合考查了切线的判定、菱形的判定以及三角形中位线定理.注意,在证明四边形ACEF是菱形时,需要先证明该四边形平行四边形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在直角三角形ABC中∠C=90°,则sinA=
 
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角三角形中,一直角边比另一直角边长1,且斜边长为5.
(1)请画出这个直角三角形的内切圆;
(2)并求出此内切圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角三角形ABC中,AD为斜边上的垂线,AE为角平分线,AF为中线,
(1)证明:AF=BF=CF;
(2)写出∠FAE和∠DAE的关系并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角三角形ABC中,∠C=90°,AB=4,阴影部分的面积为(  )
A、2πB、3πC、4πD、6π

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,在直角三角形ABC中,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC和AC的垂线AX上移动,则当AP=
5cm或10cm
时,才能使△ABC和△APQ全等.

查看答案和解析>>

同步练习册答案