【题目】(10分)如图,已知⊙O上依次有A、B、C、D四个点,=,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.
(1)求证:BF=BD;
(2)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.
【答案】(1)证明见解析;(2)存在,作图略;PG=PF.
【解析】试题分析:(1)利用三角形中位线定理得出BF=AC,再利用圆心角定理得出=,进而得出BF=BD;
(2)首先过点B作AE的垂线,与⊙O的交点即为所求的点P,得出BP⊥AE,进而证明△PBG≌△PBF(SAS),求出PG=PF.
试题解析:(10分)
(1)证明:连接AC,
∵AB=BE,∴点B为AE的中点,
∵F是EC的中点,∴BF为△EAC的中位线,∴BF=AC,
∵=,∴+=+,∴=,∴BD=AC,∴BF=BD;
(2)解:过点B作AE的垂线,与⊙O的交点即为所求的点P,
∵BF为△EAC的中位线,∴BF∥AC,∴∠FBE=∠CAE,
∵=,∴∠CAB=∠DBA,
∵由作法可知BP⊥AE,∴∠GBP=∠FBP,
∵G为BD的中点,∴BG=BD,∴BG=BF,
在△PBG和△PBF中,
,
∴△PBG≌△PBF(SAS),∴PG=PF.
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为( )
A. 2 B. 8 C. 2 D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在△ABC中,AB=BC=8cm,∠ABC=90°,点E以每秒1cm/s的速度由A向点B运动,ED⊥AC于点D,点M为EC的中点.
(1)求证:△BMD为等腰直角三角形;
(2)当点E运动多少秒时,△BMD的面积为12.5cm2?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x(元)(180≤x≤300)满足一次函数关系,部分对应值如下表:
x(元) | 180 | 260 | 280 | 300 |
y(间) | 100 | 60 | 50 | 40 |
(1)求y与x之间的函数表达式;
(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每间空置的客房,宾馆每日需支出各种费用60元.当房价为多少元时,宾馆当日利润最大?求出最大利润.(宾馆当日利润=当日房费收入-当日支出)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:∠C=∠D,OD=OC.求证:DE=CE.
【答案】证明见解析
【解析】试题分析:利用ASA证明△OBC≌△OAD,根据全等三角形的对应边相等可得OA=OB,再由OD=OC,即可得AC=BD,根据AAS证明△ACE≌△BDE,再由全等三角形的对应边相等即可得结论.
试题解析:
在△OBC和△OAD中,
,
∴△OBC≌△OAD(ASA),
∴OA=OB,
∵OD=OC,
∴OD﹣OB=OC﹣OA,即AC=BD,
在△ACE和△BDE中,
,
∴△ACE≌△BDE(AAS),
∴DE=CE.
【题型】解答题
【结束】
27
【题目】如图,以等腰直角三角形ABC的斜边AB为边向内作等边△ABD,连接DC,以DC为边,作等边△DCE,点B、E在CD的同侧.
(1)求∠BCE的大小;
(2)求证:BE=AC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中正确的是( )
A.两个数的差一定小于被减数
B.若两数的差为0,则这两数必相等
C.两个相反数相减必为0
D.若两数的差为正数,则此两数都是正数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 为的直径,点为上一点,若∠BAC=∠CAM,过点作直线垂直于射线AM,垂足为点D.
(1)试判断与的位置关系,并说明理由;
(2)若直线与的延长线相交于点, 的半径为3,并且.求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有四包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( )
A.+2
B.-3
C.+3
D.+4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com