精英家教网 > 初中数学 > 题目详情
如图,已知OA=6,∠AOB=30°,则经过点A的反比例函数的解析式为______.
过A作AC⊥x轴,
∵∠AOB=30°,
AC=
1
2
OA

∵OA=6,
∴AC=3,
在Rt△ACO中,
OC2=AO2-AC2
OC=
62-32
=3
3

∴A点坐标是:(3
3
,3),
设反比例函数解析式为y=
k
x

∵反比例函数的图象经过点A,
k=3×3
3
=9
3

∴反比例函数解析式为y=
9
3
x

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,点P是反比例函数y=
2
x
(x>0)的图象上的一个动点,PA⊥x轴于点A,延长AP至点B,使PB=PA,过点B作BC⊥y轴于点C,交反比例函数图象于点D.
(1)填空:S△AOP______S△COD(填“>“<”或“=”)
(2)当点P的位置改变时,四边形PODB的面积是否改变?说明理由.
(3)连接OB,交反比例函数y=
2
x
(x>0)的图象于点E,试求
OE
OB
的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点P在双曲线y=
k
x
(k≠0)上,点P′(1,2)与点P关于y轴对称,则此双曲线的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知y=
-6
x
,当x≥-2时,y的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)探索归纳.用等号或不等号填空:
①5+6______2
5×6

②12+13______2
12×13

③5+0______2
5×0

④7+7______2
7×7

用非负数a、b表示你发现的规律并予以证明.
(2)结论应用.已知点A(-3,0),B(0,-4),P是双曲线y=
12
x
(x>0)
上任意一点,过点P作PC⊥x轴于C,过点p作PD⊥y轴于D,连接AB、BC、CD、DA.
求四边形ABCD的面积的最小值,并说明此时四边形ABCD的形状.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,点A(m,m+1)、B(m+3,m-1)均在反比例函数y=
k
x
的图象上,正比例函数y=nx的图象交反比例函数图象于A、C两点.
(1)求出k值和线段AC的长.
(2)在y轴上是否存在点D,使∠ADC=90°?若存在,求点D的坐标;若不存在,说明理由.
(3)如图2,若E(-4,3),点P是线段AC上的一个动点,试判断
50-CP•AP
EP2
的值是否发生变化?若不变,求出其值;若变化,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点M是反比例函数y=
1
x
在第一象限内图象上的点,作MB⊥x轴于B.过点M的第一条直线交y轴于点A1,交反比例函数图象于点C1,且A1C1=
1
2
A1M,△A1C1B的面积记为S1;过点M的第二条直线交y轴于点A2,交反比例函数图象于点C2,且A2C2=
1
4
A2M,△A2C2B的面积记为S2;过点M的第三条直线交y轴于点A3,交反比例函数图象于点C3,且A3C3=
1
8
A3M,△A3C3B的面积记为S3;以此类推…;则S1+S2+S3+…+S8=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

直线y=-x+m与双曲线y=
n
x
交于第四象限一点P(a,b),且a,b是一元二次方程x2-2x-3=0的两根.
(1)求一次函数、反比例函数的解析式;
(2)直线与双曲线的另一个交点为Q,求△POQ的面积(O为直角坐标系的原点).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,OACB是矩形,C(a,b),点D为BC中点,反比例函数y=
4
x
的图象经过点D且交AC于点E.
(1)求证:△AOE与△BOD的面积相等;
(2)求证:点E是AC的中点;
(3)当OE⊥DE时,试求OB2-OA2的值.

查看答案和解析>>

同步练习册答案