精英家教网 > 初中数学 > 题目详情
如图,△ABC中,点G是重心,三条中线AD=9,CF=12,BE=15,延长AD至H,使DG=DH,则△ABH的面积为   
【答案】分析:根据三角形的重心的性质可知:GD=AD,CG=CF,BG=BE,又BD=DC,DG=DH,可证△BHD≌△CGD,从而BH=CG,在△BHG中,运用勾股定理的逆定理证明∠H=90°,再计算△ABH的面积.
解答:解:根据三角形的重心的性质可知:
GD=AD=3,CG=CF=8,BG=BE=10,
又BD=DC,∠BDH=∠CDG,DG=DH,
∴△BHD≌△CGD,即BH=CG=8,
在△BHG中,BH2+HG2=82+62=102=BG2
∴∠H=90°,
∴S△ABH=×BH×AH=×8×(9+3)=48.
点评:本题考查了三角形重心的性质,直角三角形的判断方法,以及求三角形面积的问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图,△ABC中,点D在AC上,CD=2AD,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.已给的图形中存在哪几对相似三角形?请选择一对进行证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,点D、E分别为AB、AC的中点,连接DE,线段BE、CD相交于点O,若OD=2,求OC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,点D为BC上一点,且AB=AC=CD,则图中∠1和∠2的关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,点D为AB边上的一点,点F为BC延长线上一点,DF交AC于点E.下列结论中不正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,点D在BC上,点E在AB上,BD=BE,下列四个条件中,不能使△ADB≌△CEB的条件是(  )

查看答案和解析>>

同步练习册答案