精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,一次函数y=
1
2
x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=
1
2
x2+bx+c的图象与一次函数y=
1
2
x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0)
(1)求二次函数的解析式;
(2)求四边形BDEC的面积S;
(3)在x轴上有一动点P,从O点出发以每秒1个单位的速度沿x轴向右运动,是否存在点P使得△PBC是以P为直角顶点的直角三角形?若存在,求出点P运动的时间t的值,若不存在,请说明理由.
(4)若动点P在x轴上,动点Q在射线AC上,同时从A点出发,点P沿x轴正方向以每秒2个单位的速度运动,点Q以每秒a个单位的速度沿射线AC运动,是否存在以A、P、Q为顶点的三角形与△ABD相似,若存在,求a的值,若不存在,说明理由.
分析:(1)根据直线BC的解析式,可求得点B的坐标,由于B、D都在抛物线的图象上,那么它们都满足该抛物线的解析式,通过联立方程组即可求得待定系数的值;
(2)根据抛物线的解析式,可求得E点的坐标,联立直线BC的解析式,可求得C点坐标;那么四边形BDEC的面积即可由△AEC、△ABD的面积差求得;
(3)假设存在符合条件的P点,连接BP、CP,过C作CF⊥x轴于F,若∠BPC=90°,则△BPO∽△CPF,可设出点P的坐标,分别表示出OP、PF的长,根据相似三角形所得比例线段即可求得点P的坐标,继而得出t的值.
(4)假设成立有△ABD∽△APQ或△ABD∽△AQP,则有∠ABD=∠APQ,或∠ABD=∠AQP,判断是否满足即可.
解答:精英家教网解:(1)将B(0,1),D(1,0)的坐标代入y=
1
2
x2+bx+c,
得:
c=1
b+c+
1
2
=0

解得:
b=-
3
2
c=1

故解析式y=
1
2
x2-
3
2
x+1;

(2)设C(x0,y0),
则有
y0=
1
2
x0+1
y0=
1
2
x02-
3
2
x0+1

解得
x0=4
y0=3

∴C(4,3),
由图可知:S=S△ACE-S△ABD,又由对称轴为x=
3
2
可知E(2,0),
∴S=
1
2
AE•y0-
1
2
AD×OB=
1
2
×4×3-
1
2
×3×1=
9
2


(3)设符合条件的点P存在,令P(a,0):
当P为直角顶点时,如图:过C作CF⊥x轴于F;
∵Rt△BOP∽Rt△PFC,
BO
PF
=
OP
CF

1
4-a
=
a
3

整理得a2-4a+3=0,
解得a=1或a=3;
故可得t=1或3.

(4)存在符合条件的t值,使△APQ与△ABD相似,
①当△APQ∽△ABD时,
AP
AB
=
AQ
AD

解得:a=
4
3

②当
AP
BD
=
PQ
AB

 解得:a=
20
7

∴存在符合条件的a值,使△APQ与△ABD相似,a=
4
3
20
7
点评:此题考查了二次函数解析式的确定、函数图象交点坐标及图形面积的求法、直角三角形的判定以及相似三角形的性质等,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,一次函数的图象与反比例函数的图象交于A、B两点,过A作AC⊥x轴于点C.已精英家教网OA=
5
,OC=2AC
,且点B的纵坐标为-3.
(1)求点A的坐标及该反比例函数的解析式;
(2)求直线AB的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•白云区一模)已知,如图,一次函数y=kx+b的图象与反比例函数y=
mx
的图象都经过点A(3,-2)和点B(n,6).
(1)n=
-1
-1

(2)求这两个函数的解析式;
(3)直接写出一次函数值大于反比例函数值时自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,一次函数y=kx+b的图象与反比例函数y=
m
x
的图象交于A、B两点,与x轴交于点C,OB=
10
tan∠BOC=
1
3

(1)求反比例函数的解析式;
(2)若BC=OC,求一次函数的解析式.
(3)直接写出当x<0时,kx+b-
m
x
>0的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,一次函数的图象与反比例函数的图象交于A、B两点,过A作AC⊥x,轴于点C,已知OA=
5
,OC=2AC,且点B的纵坐标为-3,
(1)求点A的坐标;
(2)求该反比例函数的解析式;
(3)点B的坐标为
2
3
,-3)
2
3
,-3)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,一次函数y=kx+b的图象与y轴交于点A,且与正比例函数y=-x的图象交于点B,则该一次函数的解析式为
y=x+2
y=x+2
;不等式kx+b>-x的解集为
x>-1
x>-1

查看答案和解析>>

同步练习册答案