精英家教网 > 初中数学 > 题目详情
如图,在直径为6的半圆上有两动点M、N,弦AM、BN相交于点P,则AP•AM+BP•BN的值为   
【答案】分析:连接AN、BM,根据圆周角定理,由AB是直径,可证∠AMB=90°,由勾股定理知,BP2=MP2+BM2,由相交弦定理知,AP•PM=BP•PN,原式=AP(AP+PM)+BP(BP+PN)=AP2+AP•PM+BP2+BP•PN=AP2+BP2+2AP•PM=AP2+MP2+BM2+2AP•PM=AP2+(AP+PM)2=AP2+AM2=AB2=36.
解答:解:连接AN、BM,
∵AB是直径,
∴∠AMB=90°.
∴BP2=MP2+BM2
∵AP•PM=BP•PN
原式=AP(AP+PM)+BP(BP+PN)=AP2+AP•PM+BP2+BP•PN
=AP2+BP2+2AP•PM
=AP2+MP2+BM2+2AP•PM
=BM2+(AP+PM)2=BM2+AM2=AB2=36.
点评:本题利用了圆周角定理和相交弦定理,勾股定理求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,是一个以线段BC为直径的半圆,请用直尺和圆规画出一个30°的角,使这个角的顶点在直径BC上或半圆弧BC上.(要求保留痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直径为5的⊙M圆心在x轴正半轴上,⊙M和x轴交于A、B两点,和y轴交精英家教网于C、D两点且CD=4,抛物线y=ax2+bx+c经过A、B、C三点,顶点为N﹒
(1)求经过A、B、C三点的抛物线解析式;
(2)直线NC与x轴交于点E,试判断直线CN与⊙M的位置关系并说明理由;
(3)设点Q是(1)中所求抛物线对称轴上的一点,试问在(1)中所求抛物线上是否存在点P使以点A、B、P、Q为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由﹒

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河北区一模)如图,在梯形ABCO中,A(0,2),B(4,2),O为原点,点C为x轴正半轴上一动点,M为线段BC中点.
(Ⅰ)设C(x,0),S△AOM=y,求y与x的关系式,并写出x的取值范围;
(Ⅱ)如果以线段AO为直径的⊙D与以BC为直径的⊙M外切,求x的值.
(Ⅲ)连BO,交线段AM于N,如果以A,N,B为顶点的三角形与△OMC相似,请写出直线CN的解析式(不要过程).

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:044

如图,在半径为R的半圆内,有一梯形ABCD,下底AB是半圆的直径,CD在半圆周上,求梯形ABCD周长的最大值。

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在直径为AB的半圆内,画出一个三角形区域,使三角形的一边为AB,顶点C在半圆周上,其它两边分别为6和8,现要建造一个内接于△ABC的矩形建筑物DEFN,其中DE在AB上,设计方案是使AC=8,BC=6.
(1)求△ABC中AB边上的高h;
(2)设DN=x,当x取何值时,建筑物DEFN所占区域的面积最大?
(3)实际施工时,发现在AB边上距B点1.85的K处有一处文物,问:这处文物是否位于最大建筑物的边上?如果在,为保护文物,请设计出你的方案,使满足条件的内接三角形中欲建的最大矩形建筑物能避开文物.

查看答案和解析>>

同步练习册答案