精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,顶点为()的抛物线交轴于点,交轴于两点(点在点的左侧). 已知点坐标为().

(1)求此抛物线的解析式;

(2)过点作线段的垂线交抛物线于点, 如果以点为圆心的圆与直线相切,请判断抛物线的对称轴与⊙有怎样的位置关系,并给出证明;

(3)已知点是抛物线上的一个动点,且位于两点之间,问:当点运动到什么位置时,的面积最大?并求出此时点的坐标和的最大面积.

(1)解:设抛物线为.

∵抛物线经过点(0,3),∴.∴.

∴抛物线为.

   (2)与⊙相交.

证明:当时,.

            ∴为(2,0),为(6,0).∴.

设⊙相切于点,连接,则.

,∴.

又∵,∴.∴.

.∴.∴.

∵抛物线的对称轴为,∴点到的距离为2.

∴抛物线的对称轴与⊙相交. 

(3) 解:如图,过点作平行于轴的直线交于点.

可求出的解析式为.

点的坐标为(),则点的坐标为().

           ∴.

           ∵,

           ∴当时,的面积最大为.

           此时,点的坐标为(3,). 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案