13£®¹Û²ìÏÂÁÐʽ×ÓµÄÒòʽ·Ö½â×ö·¨£º
¢Ù${x^2}-1=\underline{£¨x-1£©£¨x+1£©}$
¢Úx3-1
=x3-x+x-1
=x£¨x2-1£©+x-1
=x£¨x-1£©£¨x+1£©+£¨x-1£©
=£¨x-1£©[x£¨x+1£©+1]
=£¨x-1£©£¨x2+x+1£©
¢Ûx4-1
=x4-x+x-1
=x£¨x3-1£©+x-1
=x£¨x-1£©£¨x2+x+1£©+£¨x-1£©
=£¨x-1£©[x£¨x2+x+1£©+1]
=£¨x-1£©£¨x3+x2+x+1£©
¡­
£¨1£©Ä£·ÂÒÔÉÏ×ö·¨£¬³¢ÊÔ¶Ôx5-1½øÐÐÒòʽ·Ö½â£»
£¨2£©¹Û²ìÒÔÉϽá¹û£¬²ÂÏëxn-1=£¨x-1£©£¨xn-1+xn-2+¡­+x2+x+1£©£»£¨nΪÕýÕûÊý£¬Ö±½Óд½á¹û£¬²»ÓÃÑéÖ¤£©
£¨3£©¸ù¾ÝÒÔÉϽáÂÛ£¬ÊÔÇó45+44+43+42+4+1µÄÖµ£®

·ÖÎö £¨1£©Àà±ÈÉÏÃæµÄ×÷·¨£¬Öð²½ÌáÈ¡¹«Òòʽ·Ö½âÒòʽ¼´¿É£»
£¨2£©ÓÉ·Ö½âµÄ¹æÂÉÖ±½ÓµÃ³ö´ð°¸¼´¿É£»
£¨3£©°Ñʽ×Ó³Ë4-1£¬ÔٰѼÆËã½á¹û³Ë$\frac{1}{3}$¼´¿É£®

½â´ð ½â£º£¨1£©x5-1
=x5-x+x-1
=x£¨x4-1£©+x-1
=x£¨x-1£©£¨x3+x2+x+1£©+£¨x-1£©
=£¨x-1£©[x£¨x3+x2+x+1£©+1]
=£¨x-1£©£¨x4+x3+x2+x+1£©£»
£¨2£©xn-1=£¨x-1£©£¨xn-1+xn-2+¡­+x2+x+1£©£»
£¨3£©45+44+43+42+4+1
=£¨4-1£©£¨45+44+43+42+4+1£©¡Á$\frac{1}{3}$
=£¨46-1£©¡Á$\frac{1}{3}$
=$\frac{{4}^{6}-1}{3}$£®

µãÆÀ ´ËÌ⿼²éÒòʽ·Ö½âµÄʵ¼ÊÔËÓ㬶Á¶®ÌâÒ⣬ÕÆÎÕ·Ö²½ÌáÈ¡¹«Òòʽ·¨ºÍÀà±ÈµÄ·½·¨Êǽâ¾öÎÊÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®±ß³¤Îª4µÄµÈ±ßÈý½ÇÐεÄÖÐλÏß³¤Îª£¨¡¡¡¡£©
A£®2B£®4C£®6D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®¹ØÓÚxµÄ²»µÈʽax+b£¼0£¨a£¼0£©µÄ½â¼¯Îªx£¾-$\frac{b}{a}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªA£¨0£¬4£©£¬B£¨2£¬4£©£¬µãCÔÚxÖáµÄÕý°ëÖáÉÏ£¬ÇÒ¡ÏBCO=45¡ã£¬Á¬½ÓOB£®¶¯µãQÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËٶȣ¬´ÓµãBÑØÕÛÏßB-A-OÏòµãOÔ˶¯£®Í¬Ê±¶¯µãPÒÔÏàͬµÄËٶȣ¬´ÓµãOÑØÏ߶ÎOCÏòµãCÔ˶¯£®¹ýµãP×÷Ö±ÏßPM¡ÍOC£¬ÓëÕÛÏßO-B-CÏཻÓÚµãM£®µ±ÆäÖÐÒ»µãµ½´ïÖÕµãʱ£¬ÁíÒ»µãÒ²Ëæֹ֮ͣÔ˶¯£®ÉèµãPÔ˶¯Ê±¼äΪt£¨Ã룩£®
£¨1£©ÇóCµã×ø±ê£»
£¨2£©µ±µãQÔÚABÉÏʱ£¬Á¬½ÓQM¡¢CM£®ÎÊ£º¡÷BQMÄÜ·ñÓë¡÷OCMÏàËÆ£¿ÈôÄÜ£¬ÇëÇó³öPµã×ø±ê£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©µ±µãQÔÚOAÉÏʱ£¬Ì½¾¿£ºËıßÐÎOPMQµÄÖܳ¤ÊÇ·ñ·¢Éú±ä»¯£¿Èô²»±ä£¬Çó³öÆäÖܳ¤£»Èô±ä»¯£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬DÊÇBCµÄÖе㣬¹ýµãDµÄÖ±ÏßGF½»ACÓÚµãF£¬½»ACµÄƽÐÐÏßBGÓÚµãG£®
£¨1£©ÇóÖ¤£ºBG=CF£»
£¨2£©DE¡ÍGF½»ABÓÚµãE£¬Á¬½ÓEF£¬ÊÔÅжÏBE+CFÓëEFµÄ´óС£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÔĶÁÏÂÁÐÎÊÌ⣺
$\frac{1}{{1+\sqrt{2}}}=\frac{{1¡Á£¨\sqrt{2}-1£©}}{{£¨\sqrt{2}+1£©£¨\sqrt{2}-1£©}}=\sqrt{2}-1$£»
$\frac{1}{{\sqrt{3}+\sqrt{2}}}=\frac{{\sqrt{3}-\sqrt{2}}}{{£¨\sqrt{3}+\sqrt{2}£©£¨\sqrt{3}-\sqrt{2}£©}}=\sqrt{3}-\sqrt{2}$£»
$\frac{1}{{\sqrt{5}+2}}=\frac{{\sqrt{5}-2}}{{£¨\sqrt{5}+2£©£¨\sqrt{5}-2£©}}=\sqrt{5}-2$£®
£¨1£©Çó$\frac{1}{\sqrt{n+1}+\sqrt{n}}$£¨nΪÕûÊý£©µÄÖµ£®
£¨2£©ÀûÓÃÉÏÃæËù½ÒʾµÄ¹æÂɼÆË㣺
 $\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+\sqrt{4}}$+¡­+$\frac{1}{\sqrt{2010}+\sqrt{2011}}$+$\frac{1}{\sqrt{2011}+\sqrt{2012}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÈçͼÊÇijÖÖ¼ÆËã³ÌÐòʾÒâͼ£¬³õʼ¶ËÊäÈëxºó¾­Ê½×Ó4x2+9x+3´¦ÀíºóµÃµ½Ò»¸ö½á¹û£®ÈôÕâ¸ö½á¹û´óÓÚ0£¬ÔòÊä³ö´Ë½á¹û£»·ñÔò¾Í½«µÚÒ»´ÎµÃµ½µÄ½á¹û×÷ΪÊäÈëµÄxÔÙ´ÎÔËÐгÌÐò¡­Ö±µ½Êä³ö½á¹ûΪֹ£®
£¨1£©µ±³õʼ¶ËÊäÈëx=1ʱ£¬Êä³öµÄ½á¹ûÊÇ16£»
£¨2£©Èô¸Ã³ÌÐòÂú×ãÌõ¼þ£º¡°´æÔÚʵÊýa£¬µ±³õʼ¶ËÊäÈëx=aʱ£¬¸Ã³ÌÐòµÄÔËËãÎÞ·¨Í£Ö¹£¨¼´»áһֱѭ»·ÔËÐУ©¡±£¬Çëд³öÒ»¸ö·ûºÏÌõ¼þµÄaµÄÖµ-1.5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖª£¬ÈçͼËùʾ£¬ÔÚRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬
£¨1£©×÷¡ÏBµÄƽ·ÖÏßBD½»ACÓÚµãD£»£¨ÒªÇ󣺳߹æ×÷ͼ£¬±£Áô×÷ͼºÛ¼££¬²»Ð´×÷·¨£®£©
£¨2£©ÈôCD=6£¬AD=10£¬ÇóABµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Ð¡ÀöÔÚ´óÂ¥´°¿ÚA²âµÃУ԰ÄÚÆì¸Ëµ×²¿CµÄ¸©½ÇΪ¦Á¶È£¬´°¿ÚÀëµØÃæ¸ß¶ÈAB=h£¨Ã×£©£¬ÄÇôÆì¸Ëµ×²¿Óë´óÂ¥µÄ¾àÀëBC=$\frac{h}{tan¦Á}$Ã×£¨ÓæÁµÄÈý½Ç±ÈºÍhµÄʽ×Ó±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸