精英家教网 > 初中数学 > 题目详情
13.如图,阳光下斜坡旁有一棵树AB,它的阴影投在斜坡上为AC=10米,斜坡与平面形成的坡角∠DAC=15°,光线与斜坡形成的∠BCA=75°.求树AB的高度(精确到0.1米,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,$\sqrt{3}$≈1.73).

分析 作CE⊥AB于E,根据平行线的性质求出∠ECA的度数,根据三角函数的概念求出AE的长,求出∠B的度数,求出BE的长,得到答案.

解答 解:作CE⊥AB于E,
则CE∥AD,
∴∠ECA=∠DAC=15°,
cos∠ECA=$\frac{EC}{AC}$,
∴EC=10×0.97=9.7,
sin∠ECA=$\frac{AE}{AC}$,
AE=10×0.26=2.6,
∵∠DCA=15°,
∴∠BAC=75°,又∠BCA=75°,
∴∠ABC=30°,
BE=$\sqrt{3}$CE=16.78(m),
AB=AE+BE=2.6+16.78=19.38≈19.4(m),
答:树AB的高度为19.4m.

点评 本题考查的是解直角三角形的应用,掌握锐角三角函数的概念是解题的关键,解答时,要把实际问题转化为解直角三角形的问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.当x=$\sqrt{5}$-1时,求代数式(x-1)(x+3)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在?ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连接BE,DF
(1)求证:△DOE≌△BOF
(2)当∠DOE等于多少度时,四边形BFFD为菱形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.汽车油箱中有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶的路程x(单位:km)的增加而减少,平均耗油量为0.1L/km.则y与x的函数关系式为y=50-0.1x,自变量x的取值范围是0≤x≤500,汽车行驶200km时,油箱中所剩的汽油为30L.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.在△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABD的周长为11cm,AC=5cm,则△ABC的周长是16.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图1,在平面之间坐标系xoy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2-x1|2+|y2-y1|2,所以A,B两点间的距离为AB=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$.   我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xoy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x-0|2+|y-0|2,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2
问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为(x-a)2+(y-b)2=r2
 综合应用:
 如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan∠POA=$\frac{3}{4}$,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB.
    ①证明AB是⊙P的切点;
    ②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙O的方程;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.计算:$\sqrt{18}$×$\sqrt{\frac{1}{2}}$÷$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,直线a∥b,把三角板的直角顶点放在直线b上,若∠1=60°,则∠2的度数为30°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知:y与x+2成正比例,且x=1时,y=-6.
(1)求y与x之间的函数关系式;
(2)若点M(m,4)在这个函数的图象上,求点M的坐标.

查看答案和解析>>

同步练习册答案