精英家教网 > 初中数学 > 题目详情
10.如图,已知点A、B在双曲线y=$\frac{m}{x}$(m>0)上,点C、D在双曲线y=$\frac{n}{x}$(n<0)上,
AC∥BD∥y轴,AC=3,BD=4,AC与BD的距离为7,则m-n的值为12.

分析 设A(x,$\frac{m}{x}$),则C(x,$\frac{n}{x}$),根据AC与BD的距离为7可得出B(x-7,$\frac{m}{x-7}$),D(x-7,$\frac{n}{x-7}$),再由AC=3,BD=4即可得出x的值,进而得出结论.

解答 解:∵点A、B在双曲线y=$\frac{m}{x}$(m>0)上,点C、D在双曲线y=$\frac{n}{x}$(n<0)上,
∴设A(x,$\frac{m}{x}$),则C(x,$\frac{n}{x}$).
∵AC与BD的距离为7,
∴B(x-7,$\frac{m}{x-7}$),D(x-7,$\frac{n}{x-7}$).
∵AC=3,BD=4,
∴$\frac{m}{x}$-$\frac{n}{x}$=3,$\frac{n}{x-7}$-$\frac{m}{x-7}$=4,
∴$\left\{\begin{array}{l}m-n=3x\\ n-m=4(x-7)\end{array}\right.$,
∴-3x=4x-28,解得x=4,
∴m-n=12.
故答案为:12.

点评 本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.(1)求x的值:4(x-1)2=25
(2)计算:3$\sqrt{40}-\sqrt{\frac{2}{5}}-2\sqrt{\frac{1}{10}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,△ABO关于x轴对称,若点A的坐标为(a,b),则点B的坐标为(  )
A.(b,a)B.(-a,b)C.(a,-b)D.(-a,-b)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.(1)计算:($\sqrt{2}$-$\sqrt{3}$)2+(2$\sqrt{3}$+$\sqrt{6}$)(2$\sqrt{3}$-$\sqrt{6}$)
(2)因式分解:9a2(x-y)+4b2(y-x)
(3)先化简,再求值:$\frac{a-2}{{a}^{2}-1}$÷(a-1-$\frac{2a-1}{a+1}$),其中a2-a-6=0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,下列条件不能判定△ABD∽△CBA的是(  )
A.∠BAD=∠CB.∠ADB=∠BACC.AB2=BD•BCD.$\frac{BD}{AB}$=$\frac{AB}{AC}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.已知点(-1,y1),(2,y2)都在直线y=$\frac{1}{2}$x+b上,则y1,y2大小关系是(  )
A.y1>y2B.y1=y2C.y1<y2D.不能比较

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.一次函数y=ax+b的图象如图所示,请化简$\sqrt{(a-1)^{2}}$-$\sqrt{(b+1)^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图是由六个棱长为1的正方体组成的几何体,它的左视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算:
(1)26-(-14)+(-10)-5
(2)(-2)2×7+6÷(-2)
(3)15°37′+42°51′
(4)(4x+5y)-2(3x-4y)

查看答案和解析>>

同步练习册答案