精英家教网 > 初中数学 > 题目详情
如图,临沂三河口大桥有一段抛物线行的工桥梁,抛物线的表达式为y=ax2+bx,小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和20秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需______秒.
∵当小强骑自行车行驶10秒时和20秒时拱梁的高度相同,
∴抛物线解析式的对称轴为:x=
10+20
2
=15,
∴抛物线y=ax2+bx与x轴的交点坐标为;(0,0),(30,0).
故则小强骑自行车通过拱梁部分的桥面OC共需30秒.
故答案为;30.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,一个拱形桥架可以近似看作是由等腰梯形ABD8D1和其上方的抛物线D1OD8组成.若建立如图所示的直角坐标系,跨度AB=44米,∠A=45°,AC1=4米,点D2的坐标为(-13,-1.69),则桥架的拱高OH=______米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,一单杠高2.2m,两立柱间的距离为1.6m,将一根绳子的两端拴于立柱与铁杠的结合处A、B,绳子自然下垂,虽抛物线状,一个身高0.7m的小孩站在距立柱0.4m处,其头部刚好触上绳子的D处,求绳子的最低点O到地面的距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在平面直角坐标中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边BC在线段OM上,点A、D在抛物线上.
(1)请写出P、M两点坐标,并求这条抛物线的解析式;
(2)设矩形ABCD的周长为l,求l的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,与两坐标轴交点为点A和点C,与抛物线y=ax2+ax+b交于点B,其中点A(0,2),点B(-3,1),抛物线与y轴交点D(0,-2).
(1)求抛物线的解析式;
(2)求点C的坐标;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知函数y1=x,y2=x2+bx+c,α,β为方程y1-y2=0的两个根,点M(t,T)在函数y2的图象上.
(Ⅰ)若α=
1
3
,β=
1
2
,求函数y2的解析式;
(Ⅱ)在(Ⅰ)的条件下,若函数y1与y2的图象的两个交点为A,B,当△ABM的面积为
1
123
时,求t的值;
(Ⅲ)若0<α<β<1,当0<t<1时,试确定T,α,β三者之间的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,在Rt△ABC中,∠C=90°,边BC的长为20cm,边AC的长为hcm,在此三角形内有一个矩形CFED,点D,E,F分别在AC,AB,BC上,设AD的长为xcm,矩形CFED的面积为y(单位:cm2).
(1)当h等于30时,求y与x的函数关系式;(不要求写出自变量x的取值范围)
(2)在(1)的条件下,矩形CFED的面积能否为180cm2?请说明理由;
(3)若y与x的函数图象如图②所示,求此时h的值.
(参考公式:二次函数y=ax2+bx+c,当x=-
b
2a
时,y最大(小)值=
4ac-b2
4a
.)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

课题研究:现有边长为120厘米的正方形铁皮,准备将它设计并制成一个开口的水槽,使水槽能通过的水的流量最大.
初三(1)班数学兴趣小组经讨论得出结论:在水流速度一定的情况下,水槽的横截面面积越大,则通过水槽的水的流量越大.为此,他们对水槽的横截面进行了如下探索:
(1)方案①:把它折成横截面为直角三角形的水槽(如图1).
若∠ACB=90°,设AC=x厘米,该水槽的横截面面积为y厘米2,请你写出y关于x的函数关系式(不必写出x的取值范围),并求出当x取何值时,y的值最大,最大值又是多少?
方案②:把它折成横截面为等腰梯形的水槽(如图2).
若∠ABC=120°,请你求出该水槽的横截面面积的最大值,并与方案①中的y的最大值比较大小;
(2)假如你是该兴趣小组中的成员,请你再提供两种方案,使你所设计的水槽的横截面面积更大.画出你设计的草图,标上必要的数据(不要求写出解答过程).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知直线y=-2x+3与抛物线y=x2相交于A、B两点,O为坐标原点,那么△OAB的面积等于______.

查看答案和解析>>

同步练习册答案