精英家教网 > 初中数学 > 题目详情

【题目】如图是交警在某个路口统计的某时段来往车辆的车速情况.(单位:千米/时)

(1)车速的众数是多少?
(2)计算这些车辆的平均数度;
(3)车速的中位数是多少?

【答案】
(1)解:根据条形统计图所给出的数据得:42出现了6次,出现的次数最多,则车速的众数是42千米/时

(2)解:这些车辆的平均数度是:

(40+41×3+42×6+43×5+44×3+45×2)÷20=42.6(千米/时),

答:这些车辆的平均数度是42.6千米/时


(3)解:因为共有20辆车,中位数是第10和11个数的平均数,

所以中位数是42和43的平均数,

(42+43)÷2=42.5(千米/时),

所以车速的中位数是42.5千米/时


【解析】(1)出现的次数最多数据是众数,42出现了6次,易得众数为42千米/小时。
(2)加权平均数的计算注意各个数据的权。
(3)全部数据按从大到小排列,如果是奇数个数则最中间的数为中位数,如果是偶数个数,则最中间的两数的平均数为中位数。所以易得因为共有20辆车,中位数是第10和11个数的平均数所以中位数是42和43的平均数42.5千米/时。
【考点精析】本题主要考查了中位数、众数的相关知识点,需要掌握中位数是唯一的,仅与数据的排列位置有关,它不能充分利用所有数据;众数可能一个,也可能多个,它一定是这组数据中的数才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数与反比例函数的图象交于点.

(1)求这两个函数的表达式;

(2)在轴上是否存在点,使为等腰三角形?若存在,求的值,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对任意一个三位数n,如果n满足各个数位上的数字互不相同且都不为零那么称这个数为“相异数”将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数把这三个新三位数的和与111的商记为Fn).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F123)=6

1)计算:F243,F617

2)若s,t都是“相异数”其中s=100x+32,t=150+y1x9,1y9,x,y都是正整数)规定:k=Fs+Ft)=18k的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了丰富学生的校园生活,准备购进一批篮球和足球,其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相同,篮球与足球的单价各是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=12cm,BC=24cm,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB=30°,OP平分∠AOB,PD⊥OB于D,PC∥OB交OA于C,若PC=10,则PD=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打折.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一个多边形的每一个外角都等于40°,则这个多边形的边数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列数据3,2,3,4,5,2,2的中位数是( )
A.5
B.4
C.3
D.2

查看答案和解析>>

同步练习册答案