精英家教网 > 初中数学 > 题目详情

【题目】问题原型:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.过点D作△BCD的BC边上的高DE, 易证△ABC≌△BDE,从而得到△BCD的面积为
初步探究:如图②,在Rt△ABC中,∠ACB=90°,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.用含a的代数式表示△BCD的面积,并说明理由.
简单应用:如图③,在等腰三角形ABC中,AB=AC,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.直接写出△BCD的面积.(用含a的代数式表示)

【答案】解:初步探究:△BCD的面积为 . 理由:如图②,过点D作BC的垂线,与BC的延长线交于点E.

∴∠BED=∠ACB=90°.
∵线段AB绕点B顺时针旋转90°得到线段BE,
∴AB=BD,∠ABD=90°.
∴∠ABC+∠DBE=90°.
∵∠A+∠ABC=90°.
∴∠A=∠DBE.
在△ABC和△BDE中,

∴△ABC≌△BDE(AAS)
∴BC=DE=a.
∵SBCD= BCDE
∴SBCD=
简单应用:如图③,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,

∴∠AFB=∠E=90°,BF= BC= a.
∴∠FAB+∠ABF=90°.
∵∠ABD=90°,
∴∠ABF+∠DBE=90°,
∴∠FAB=∠EBD.
∵线段BD是由线段AB旋转得到的,
∴AB=BD.
在△AFB和△BED中,

∴△AFB≌△BED(AAS),
∴BF=DE= a.
∵SBCD= BCDE,
∴SBCD= aa= a2
∴△BCD的面积为
【解析】初步探究:如图②,过点D作BC的垂线,与BC的延长线交于点E,由垂直的性质就可以得出△ABC≌△BDE,就有DE=BC=a.进而由三角形的面积公式得出结论; 简单运用:如图③,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,由等腰三角形的性质可以得出BF= BC,由条件可以得出△AFB≌△BED就可以得出BF=DE,由三角形的面积公式就可以得出结论.
【考点精析】本题主要考查了旋转的性质的相关知识点,需要掌握①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】探究函数y=x+ 的图象与性质
(1)函数y=x+ 的自变量x的取值范围是
(2)下列四个函数图象中,函数y=x+ 的图象大致是

(3)对于函数y=x+ ,求当x>0时,y的取值范围.
请将下面求解此问题的过程补充完整:
解:∵x>0
∴y=x+
=( 2+( 2
=( 2+
∵( 2≥0,
∴y
(4)若函数y= ,则y的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,线段AC和直线l分别垂直线段AB于点A,B.点P是线段AB上的一个动点,由A移动到B,连接CP,过点P作PD⊥CP交l于点D,设线段AP的长为x,BD的长为y,在下列图象中,能大致表示y与x之间函数关系的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=BC,以AB为直径的⊙O分别交AC,BC于点D,E,过点A作⊙O的切线交BC的延长线于点F,连接AE.
(1)求证:∠ABC=2∠CAF;
(2)过点C作CM⊥AF于M点,若CM=4,BE=6,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的盒子里装有三个分别写有数字6,﹣2,7的小球,它们的形状、大小、质地完全相同,先从盒子里随机抽取一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字,请你用画树状图或列表的方法求两次取出小球上的数字和大于10的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论: ①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1
其中正确的是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)

(1)求抛物线的解析式;
(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.
(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题呈现:
(Ⅰ)如图1,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA上,AE=DG,求证:2S四边形EFGH=S矩形ABCD . (S表示面积)
(Ⅱ)实验探究:某数学实验小组发现:若图1中AH≠BF,点G在CD上移动时,上述结论会发生变化,分别过点E、G作BC边的平行线,再分别过点F、H作AB边的平行线,四条平行线分别相交于点A1、B1、C1、D1 , 得到矩形A1B1C1D1
如图2,当AH>BF时,若将点G向点C靠近(DG>AE),经过探索,发现:2S四边形EFGH=S矩形ABCD+S
如图3,当AH>BF时,若将点G向点D靠近(DG<AE),请探索S四边形EFGH、S矩形ABCD与S 之间的数量关系,并说明理由.
(Ⅲ)迁移应用:
请直接应用“实验探究”中发现的结论解答下列问题:

⑴如图4,点E、F、G、H分别是面积为25的正方形ABCD各边上的点,已知AH>BF,AE>DG,S四边形EFGH=11,HF= ,求EG的长.

⑵如图5,在矩形ABCD中,AB=3,AD=5,点E、H分别在边AB、AD上,BE=1,DH=2,点F、G分别是边BC、CD上的动点,且FG= ,连接EF、HG,请直接写出四边形EFGH面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,我们把对角线互相垂直的四边形叫做垂美四边形.

(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.
(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.
猜想结论:(要求用文字语言叙述)垂美四边形两组对边的平方和相等
写出证明过程(先画出图形,写出已知、求证).
(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.

查看答案和解析>>

同步练习册答案