精英家教网 > 初中数学 > 题目详情
已知平行四边形ABCD中,对角线AC和BD相交于点O,AC=10,BD=8.
(1)若AC⊥BD,试求四边形ABCD的面积;
(2)若AC与BD的夹角∠AOD=60°,求四边形ABCD的面积;
(3)试讨论:若把题目中“平行四边形ABCD”改为“四边形ABCD”,且∠AOD=θ,AC=a,BD=b,试求四边形ABCD的面积(用含θ,a,b的代数式表示).

【答案】分析:(1)因为AC⊥BD,所以四边形ABCD的面积等于对角线乘积的一半;
(2)过点A分别作AE⊥BD,CF⊥BD,根据平行四边形对角线互相平分和正弦定理求出△AOD的面积,那么四边形ABCD的面积=4△AOD的面积;
(3)作辅助线AE⊥BD,CF⊥BD,利用正弦定理求出△BCD、△ABD的高,那么四边形ABCD的面积=△BCD的面积+△ABD的面积.
解答:解:(1)∵AC⊥BD,
∴四边形ABCD的面积=AC•BD=40.

(2)分别过点A,C作AE⊥BD,CF⊥BD,垂足分别为E,F.                  (3分)
∵四边形ABCD为平行四边形,
∴AO=CO=AC=5,BO=DO=BD=4.
在Rt△AOE中,sin∠AOE=
∴AE=AO•sin∠AOE=AO×sin60°=5×=.       (4分)
∴S△AOD=OD•AE=×4××5=5.              (5分)
∴四边形ABCD的面积S=4S△AOD=20.                (6分)

(3)如图所示,过点A,C分别作AE⊥BD,CF⊥BD,垂足分别为E,F.   (7分)

在Rt△AOE中,sin∠AOE=
∴AE=AO•sin∠AOE=AO•sinθ.
同理可得
CF=CO•sin∠COF=CO×sinθ.                                   (8分)
∴四边形ABCD的面积
S=S△ABD+S△CBD=BD•AE+BD•CF
=BDsinθ(AO+CO)
=BD•ACsinθ
=absinθ.
点评:根据平行四边形的性质,结合直角三角形求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,已知平行四边形ABCD.
(1)用直尺和圆规作出∠ABC的平分线BE,交AD的延长线于点E,交DC于点F(保留作图痕迹,不写作法);
(2)在第(1)题的条件下,求证:△ABE是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

8、已知平行四边形ABCD的周长为32cm,△ABC的周长为20cm,则AC=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知平行四边形ABCD,AD=a,AB=b,∠ABC=α.点F为线段BC上一点(端点B,C除外),连接AF,AC精英家教网,连接DF,并延长DF交AB的延长线于点E,连接CE.
(1)当F为BC的中点时,求证:△EFC与△ABF的面积相等;
(2)当F为BC上任意一点时,△EFC与△ABF的面积还相等吗?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

49、如图,已知平行四边形ABCD,AE平分∠DAB交DC于E,BF平分∠ABC交DC于F,DC=6cm,AD=2cm,求DE、EF、FC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知平行四边形ABCD中,对角线BD平分∠ABC,求证:四边形ABCD是菱形.

查看答案和解析>>

同步练习册答案