精英家教网 > 初中数学 > 题目详情
探索研究
已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:
x-1123
y-5-8-9-8
(1)求该二次函数的关系式,并在给定的坐标系xOy中画出函数的图象;
(2)若A(m,y1),B(m+4,y2)两点都在该函数的图象上.
①试比较y1与y2的大小;
②若A、B两点位于x轴的下方,点P为函数图象的对称轴与x轴的交点,点Q为函数图象上的一点,解答以下问题:
(Ⅰ)直接写出实数m的变化范围是______;
(Ⅱ)是否存在实数m,使得四边形APBQ为平行四边形?若存在,请求出m的值,并写出点Q的坐标;若不存在,请说明理由.

【答案】分析:(1)任取两点坐标,利用待定系数法求函数解析式,根据表格中提供的数据画出图象;
(2)①求出y1-y2的表达式,然再分大于0,等于0,小于0三种情况讨论;
②(Ⅰ)先求出二次函数图象与x轴的交点的横坐标,再根据交点在x轴的下方,令m大于左边点的横坐标,m+4小于右边点的横坐标,解不等式即可;
(Ⅱ)先求出AB与x轴平行,所以分(i)AB为平行四边形的边时,PQ与AB平行,此时点Q就是二次函数与x轴的交点,(ii)AB为平行四边形的对角线,根据平行四边形的对角线互相平分的性质,PQ平分AB,所以点Q就是二次函数的顶点,然后分别讨论求解.
解答:解:(1)根据题意,
解得
∴该二次函数解析式为y=x2-4x-5,图象如右;

(2)①y1-y2=m2-4m-5-(m+4)2+4(m+4)+5=-8m,
∴当m>0时,-8m<0,y1<y2
当m=0时,-8m=0,y1=y2
当m<0时,-8m>0,y1>y2

②(Ⅰ)当y=0时,x2-4x-5=0,
解得x1=-1,x2=5,
∴二次函数与x轴的交点坐标为(-1,0),(5,0),
∵A、B两点位于x轴的下方,
∴m>-1,m+4<5,
解得-1<m<1;

(Ⅱ)∵二次函数对称轴为x=-=2,
AB=||=2,
∴点A、B关于对称轴对称,
∴AB∥x轴,
(i)若AB为平行四边形的边,则PQ∥AB,
∴点Q为二次函数图象与x轴的交点,此时PQ=2-(-1)=3,或PQ=5-2=3,
而AB=m+4-m=4,
AB≠PQ,
∴AB不能是平行四边形的边;
(ii)若AB为平行四边形的对角线,根据AB关于对称轴对称,得
点Q为二次函数顶点,
又x=2时,y=22-4×2-5=-9,
∴点Q坐标是(2,-9),
根据平行四边形对角线互相平分,点A、B的纵坐标是=-4.5,
此时,m2-4m-5=-4.5,
解得m=,或m=(舍去).
又∵此时AB∥x轴,
∴y1=y2
∴-8m=0,
解得m=0,
∵m=≠0,
∴不存在实数m,使得四边形APBQ为平行四边形.
点评:本题是二次函数的综合题型,其中涉及的知识点有待定系数法求函数解析式,两点的距离公式,平行四边形的性质,解一元二次方程,综合性较强,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网探索研究
已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:
x -1 0 1 2 3
y 0 -5 -8 -9 -8
(1)求该二次函数的关系式,并在给定的坐标系xOy中画出函数的图象;
(2)若A(m,y1),B(m+4,y2)两点都在该函数的图象上.
①试比较y1与y2的大小;
②若A、B两点位于x轴的下方,点P为函数图象的对称轴与x轴的交点,点Q为函数图象上的一点,解答以下问题:
(Ⅰ)直接写出实数m的变化范围是
 

(Ⅱ)是否存在实数m,使得四边形APBQ为平行四边形?若存在,请求出m的值,并写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

问题情境
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+
a
x
)(x>0)

探索研究
(1)我们可以借鉴学习函数的经验,先探索函数y=x+
1
x
(x>0)
的图象性质.
1填写下表,画出函数的图象:
x
1
4
1
3
1
2
1 2 3 4
y
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,除了通过观察图象,还可以通过配方得到.同样通过配方也可以求函数y=x+
1
x
(x>0)的最小值.y=x+
1
x
=(
x
)2+(
1
x
)2
=(
x
)2+(
1
x
)2-2
x
1
x
+2
x
1
x

=(
x
-
1
x
)2+2
≥2
x
-
1
x
=0,即x=1时,函数y=x+
1
x
(x>0)的最小值为2.
解决问题
(2)解决“问题情境”中的问题,直接写出答案.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•营口一模)[提出问题]:已知矩形的面积为1,当该矩形的长为多少时,它的周长最小?最小值是多少?
[建立数学模型]:设该矩形的长为x,周长为y,则y与x的函数关系式为y=x+
1
x
(x>0).
[探索研究]:我们可以借鉴以前研究函数的经验,先探索函数y=x+(x>0)的图象和性质.
①填写下表,画出函数的图象;
x
1
4
1
3
1
2
1 2 3 4
y
②观察图象,写出当自变量x取何值时,函数y=x+
1
x
(x>0)有最小值;
③我们在课堂上求二次函数最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+
1
x
(x>0)的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

探索研究
已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:
x-10123
y0-5-8-9-8
(1)求该二次函数的关系式,并在给定的坐标系xOy中画出函数的图象;
(2)若A(m,y1),B(m+4,y2)两点都在该函数的图象上.
①试比较y1与y2的大小;
②若A、B两点位于x轴的下方,点P为函数图象的对称轴与x轴的交点,点Q为函数图象上的一点,解答以下问题:
(Ⅰ)直接写出实数m的变化范围是______;
(Ⅱ)是否存在实数m,使得四边形APBQ为平行四边形?若存在,请求出m的值,并写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案