精英家教网 > 初中数学 > 题目详情
如图,直线y=-
3
3
x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是______.
令y=0,则-
3
3
x+2=0,
解得x=2
3

令x=0,则y=2,
∴点A(2
3
,0),B(0,2),
∴OA=2
3
,OB=2,
∴∠BAO=30°,
∴AB=2OB=2×2=4,
∵△AOB绕点A顺时针旋转60°后得到△AO′B′,
∴∠BAB′=60°,
∴∠OAB′=30°+60°=90°,
∴AB′⊥x轴,
∴点B′(2
3
,4).
故答案为:(2
3
,4).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角三角板DEF绕D点按逆时针方向旋转.

(1)在图1中,DE交AB于M,DF交BC于N.①证明DM=DN;②在这一过程中,直角三角板DEF与△ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明是如何变化的;若不发生变化,求出其面积;
(2)继续旋转至如图2的位置,延长AB交DE于M,延长BC交DF于N,DM=DN是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)继续旋转至如图3的位置,延长FD交BC于N,延长ED交AB于M,DM=DN是否仍然成立?若成立,请给出写出结论,不用证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

两个边长不定的正方形ABCD与AEFG如图1摆放,将正方形AEFG绕点A逆时针旋转一定角度.
(1)若点E落在BC边上(如图2),试探究线段CF与AC的位置关系并证明;
(2)若点E落在BC的延长线上时(如图3),(1)中结论是否仍然成立?若不成立,请说明理由;若成立,加以证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

两块大小一样斜边为4且含有30°角的三角板如图水平放置.将△CDE绕C点按逆时针方向旋转,当E点恰好落在AB边上的E′点时,
EE′
的长度为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,A(-4,-2),B(-2,-2),C(-1,0)
(1)将△ABC绕C点顺时针旋转90°,得△A1B1C,则点A1的坐标为______.
(2)将△A1B1C向右平移6个单位得△A2B2C2,则点B2的坐标为______.
(3)从△ABC到△A2B2C2能否看作是绕某一点作旋转变换?若能,则旋转中心坐标为______在旋转变换中AB所扫过的面积为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1、2是两个相似比为1:
2
的等腰直角三角形,将两个三角形如图3放置,小直角三角形的斜边与大直角三角形的一直角边重合.
(1)在图3中,绕点D旋转小直角三角形,使两直角边分别与AC、BC交于点E,F,如图4.求证:AE2+BF2=EF2
(2)若在图3中,绕点C旋转小直角三角形,使它的斜边和CD延长线分别与AB交于点E、F,如图5,此时结论AE2+BF2=EF2是否仍然成立?若成立,请给出证明;若不成立,请说明理由.


(3)如图6,在正方形ABCD中,E、F分别是边BC、CD上的点,满足△CEF的周长等于正方形ABCD的周长的一半,AE、AF分别与对角线BD交于M、N,试问线段BM、MN、DN能否构成三角形的三边长?若能,指出三角形的形状,并给出证明;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,将△ADF绕正方形ABCD的顶点A顺时针旋转90度,得到△ABE,连接EF,则下列结论错误的是(  )
A.△ADF≌△ABE
B.AE⊥AF
C.∠AEF=45°
D.四边形AECF的周长等于ABCD的周长

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)当直线MN绕点C旋转到图1的位置时,求证:DE=AD+BE;
(2)当直线MN绕点C旋转到图2、图3的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,将△ABC绕点C顺时针旋转40°得△A′B′C,若AC⊥A′B′,则∠BAC等于(  )
A.50°B.60°C.70°D.80°

查看答案和解析>>

同步练习册答案