精英家教网 > 初中数学 > 题目详情
19.矩形的周长为4a+2b,一边长为a-2b,则矩形的另一边长为a+3b.

分析 根据矩形的性质列出边长的表达式,再去括号,合并同类项即可.

解答 解:∵矩形的周长为4a+2b,一边长为a-2b,
∴矩形的另一边长=$\frac{1}{2}$(4a+2b)-(a-2b)=2a+b-a+2b=a+3b.
故答案为:a+3b.

点评 本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.思考:已知直线l1,l2,l3相互平行,怎样在三条直线上各取一点作出一个等边三角形?仔细阅读小明的作图方法并证明他的方法是正确的.作法:如图,先作等边三角形ADE,使A、E在l1上,D在l3上,DE与l2交于B点,连接AB;再在l3上取一点C,使DC=EB,连接AC、BC.则△ABC是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.请你用学习“一次函数”时积累的经验和方法解决下列问题:
(1)在平面直角坐标系中,画出函数y=|x|的图象:
①列表填空:
x-3-2-10123
y
②描点、连线,画出y=|x|的图象;
(2)结合所画函数图象,写出y=|x|两条不同类型的性质;
(3)写出函数y=|x|与y=|x+2|图象的平移关系.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.若a2-3a=-1,则代数式-a2+3a+5值为6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,学校打算用长为16cm的篱笆围成一个长方形的生物园饲养小兔,生物园一面靠墙(篱笆只需围三面,AB为宽);
(1)写出长方形的面积y(m2)与宽x(m)之间的函数关系式.
(2)当x为何值时,长方形的面积最大?最大面积为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.不等式组$\left\{\begin{array}{l}x>m\\ x>6\end{array}\right.$的解集是x>6,则m取值范围是m≤6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.(1)$\sqrt{18}$-$\frac{2}{\sqrt{2}}$+(1-$\sqrt{2}$)+($\frac{1}{2}$)-1
(2)($\frac{1}{2}$)-1+($\sqrt{2}$-1)0×$\root{3}{-8}$-|1-$\sqrt{5}$|;
(3)(a+2)2-a(1-a)-(2-3a)(a+2);
(4)($\frac{x+2}{x-2}+\frac{4}{{{x^2}-4x+4}}$)÷$\frac{x}{x-2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图1,已知抛物线C1:y=-(x-1)2+4与x轴交于A、B两点,将抛物线C1沿x轴翻折后,再作适当平移得到抛物线C2,且抛物线C2的顶点恰好在B点,抛物线C2与抛物线C1交于点Q.

(1)请直接写出抛物线C2的表达式,并判断Q点是否为抛物线C1的顶点;
(2)将抛物线C2沿抛物线C1平移得到抛物线C3,始终保证抛物线C3的顶点P在第一象限的抛物线C1上,抛物线C3与抛物线C1交于点Q.
①如图2,若△APQ为直角三角形,求抛物线C3的解析式;
②如图3,过点P作AQ的平行线交x轴于点D,是否存在这样的抛物线C3,使得四边形ADPQ为等腰梯形?若存在,请求抛物线C3的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图1,△ABC为等边三角形,点M是射线AE上任意一点(M不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转60°得到线段CN,连接BN,直线BN交射线AE于点D.
(1)直接写出直线BD与射线AE相交所成锐角的度数;
(2)如图2,当射线AE与AC的夹角∠EAC为钝角时,其他条件不变,(1)中结论是否发生变化?如果不变,加以证明;如果变化,请说明理由;
(3)如图3,在等腰Rt△ABC中,∠ACB=90°,射线AE交BC于点H,∠EAC=15°,点M是射线AE上任意一点(M不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,连接BN,直线BN交射线AE于点D.G,F分别是AH,AB的中点.求证:CD=GF.

查看答案和解析>>

同步练习册答案