分析 利用配方法将已知抛物线解析式转化为顶点式,然后得到平移后抛物线解析式,根据新解析式求解即可.
解答 解:y=-2x2+4x-5=-2(x-1)2-3,其顶点坐标是(1,-3),将其向左平移3个单位后的顶点坐标是(-2,-3),
故其抛物线解析式为:y=-2(x+2)2-3=-2x2-8x-11.
所以它与y轴的交点是(0,-11).
故答案是:(0,-11).
点评 本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | y3<y2<y1 | B. | y2<y3<y1 | C. | y3<y1<y2 | D. | y2<y1<y3 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com