精英家教网 > 初中数学 > 题目详情
(2012•静海县二模)如图,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1.若四边形AC1A1C为矩形,则a,b应满足的关系式为(  )
分析:假设a=-1,b=1得出抛物线m的解析式,再利用C与C1关于点B中心对称,得出二次函数的顶点坐标,利用矩形性质得出要使平行四边形AC1A1C是矩形,必须满足AB=BC,即可求出.
解答:解:假设a=-1,b=1时,抛物线m的解析式为:y=-x2+1.
令x=0,得:y=1.∴C(0,1).
令y=0,得:x=±1.
∴A(-1,0),B(1,0),
∵C与C1关于点B中心对称,
∴抛物线n的解析式为:y=(x-2)2-1=x2-4x+3;
令x=0,得:y=b.∴C(0,b).
令y=0,得:ax2+b=0,∴x=±
-
b
a
,∴A(-
-
b
a
,0),B(
-
b
a
,0),
∴AB=2
-
b
a
,BC=
OC2+OB2
=
b2-
b
a

要使平行四边形AC1A1C是矩形,必须满足AB=BC,
∴2
-
b
a
=
b2-
b
a
.∴4×(-
b
a
)=b2-
b
a

∴ab=-3.
∴a,b应满足关系式ab=-3.
故选B.
点评:此题主要考查了平行四边形的性质以及矩形的性质和点的坐标关于一点中心对称的性质,灵活应用平行四边形的性质是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•静海县二模)现有A、B两个班级,每个班级各有45名学生参加一次测验,每名参加者可获得0、1、2、3、4、5、6、7、8、9分这几种不同分值中的一种.测试结果A班的成绩如下图所示,B班的成绩如表所示.
分数 0 1 2 3 4 5 6 7 8 9
人数 1 3 5 7 6 8 6 4 3 2
由观察所得,
B
B
班的方差较大;若两班合计共有60人及格,问参加者最少获
4
4
分值可以及格.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•静海县二模)在1×3的矩形内不重叠地放两个与大矩形相似的小矩形,且每个小矩形的每条边与大矩形的一条边平行.
(Ⅰ)如图①放置时,两个小矩形周长和(两个小矩形重叠的边要重复计算)为
16
3
16
3

(Ⅱ)怎样放置才能使两个小矩形周长和最大?在图②中画出图形,其最大值为
88
9
88
9

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•静海县二模)在平面直角坐标系中,两个全等的直角三角板OAB和DCE重叠在一起,∠AOB=60°,B(2,0).固定△OAB不动,将△DCE进行如下操作:
(Ⅰ) 如图①,△DCE沿x轴向右平移(D点在线段AB内移动),连接AC、AD、CB,四边形ADBC的形状在不断的变化,它的面积变化吗?若不变,求出其面积;若变化,请说明理由.
(Ⅱ)如图②,当点D为OB的中点时,请你猜想四边形ADBC的形状,并说明理由.
(Ⅲ)如图③,在(Ⅱ)中,将点D固定,然后绕D点按顺时针将△DCE旋转30°,在x轴上求一点P,使|AP-CP|最大.请直接写出P点的坐标和最大值,不要求说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•静海县二模)已知二次函数y1=ax2+bx+c(a≠0)的图象经过三点(1,0),(-3,0),(0,-
3
2
).
(Ⅰ)求二次函数的解析式;
(Ⅱ)若(Ⅰ)中的二次函数,当x取a,b(a≠b)时函数值相等,求x取a+b时的函数值;
(Ⅲ)若反比例函数y2=
k
x
(k>0,x>0)的图象与(Ⅰ)中的二次函数的图象在第一象限内的交点为A,点A的横坐标为x0满足2<x0<3,试求实数k的取值范围.

查看答案和解析>>

同步练习册答案