精英家教网 > 初中数学 > 题目详情
(2013•张家港市二模)如图,菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A′、D′处,且A′D′经过B,EF为折痕,当D′F⊥CD时,
FD
FC
的值为(  )
分析:延长FC、A′D′相交于点G,根据菱形的对角相等求出∠BCD=∠A=60°,根据翻折的性质可得∠A′D′F=∠D,再求出∠FD′G=60°,根据直角三角形两锐角互余求出∠G=30°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CBG=30°,从而得到∠CBG=∠G,根据等角对等边求出BC=CG,然后利用∠G的正切值列式整理即可得解.
解答:解:如图,延长FC、A′D′相交于点G,
∵菱形ABCD中,∠A=60°,
∴∠BCD=∠A=60°,∠D=180°-60°=120°,
由翻折的性质得,∠A′D′F=∠D=120°,FD′=FD,
∴∠FD′G=180°-∠A′D′F=180°-120°=60°,
∵D′F⊥CD,
∴∠G=90°-∠FD′G=90°-60°=30°,
∴∠CBG=∠BCD-∠G=60°-30°=30°,
∴∠CBG=∠G,
∴BC=CG,
在Rt△FD′G中,tan∠G=
FD′
FG

∵FG=FC+CG=FC+BC=FC+CD=FC+FD+FC=2FC+FD,
∴tan30°=
FD
2FC+FD
=
3
3

整理得,
FD
FC
=
2
3
-1
=
3
+1.
故选B.
点评:本题考查了翻折变换的性质,菱形的性质,等腰三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,作辅助线构造出等腰三角形和直角三角形是解题的关键,也是本题的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•张家港市二模)如图,在平面直角坐标系中,点A坐标为(-4,0),⊙O与x轴的负半轴交于B(-2,0).点P是⊙O上的一个动点,PA的中点为Q.当点Q也落在⊙O上时,cos∠OQB的值等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•张家港市二模)如图,在Rt△ABC中,∠C=90°,AC=2,AB=6,⊙O是△ABC的外接圆,D是弧BC的中点,则BD=
2
3
2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•张家港市二模)若不等式组
x-2<2x
a+2x
4
<1
的所有整数解的和为5,则实数a的取值范围是
-4≤a<-2
-4≤a<-2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•张家港市二模)如图,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=2AD,F、E分别是BA、BC的中点,则下列结论正确的是
①②③
①②③

①△ABC是等腰三角形       ②四边形EFAM是菱形
③S△BEF=
12
S△ACD        ④DE平分∠CDF.

查看答案和解析>>

同步练习册答案