精英家教网 > 初中数学 > 题目详情
(2009•大连)如图,抛物线F:y=ax2+bx+c的顶点为P,抛物线F与y轴交于点A,与直线OP交于点B.过点P作PD⊥x轴于点D,平移抛物线F使其经过点A、D得到抛物线F′:y=a′x2+b′x+c′,抛物线F′与x轴的另一个交点为C.
(1)当a=1,b=-2,c=3时,求点C的坐标(直接写出答案);
(2)若a、b、c满足了b2=2ac
①求b:b′的值;
②探究四边形OABC的形状,并说明理由.

【答案】分析:(1)由于抛物线F′由抛物线F平移所得,开口方向和开口大小都无变化,因此a=a′=1;由于两条抛物线都与y轴交于A点,那么c=c′=3.然后可根据抛物线F的坐标求出其顶点坐标,即可得出D点的坐标,然后将D的坐标代入抛物线F′中,即可求出抛物线F′的解析式,进而可求出C点的坐标.
(2)①与(1)的方法类似,在求出D的坐标后,将D的坐标代入抛物线F′中,即可得出关于b,b′的关系式即可得出b,b′的比例关系.
②探究四边形OABC的形状,无非是平行四边形,菱形,矩形这几种.那么首先要证的是四边形OABC是个平行四边形,已知了OA∥BC,只需看A,B的纵坐标是否相等,即OA是否与BC的长相等.根据抛物线F的解析式可求出P点的坐标,然后用待定系数法可求出OP所在直线的解析式.进而可求出抛物线F与直线OP的交点B的坐标,然后判断B的纵坐标是否与A点相同,如果相同,则四边形OABC是矩形(∠AOC=90°),如果B,A点的纵坐标不相等,那么四边形AOCB是个直角梯形.
解答:解:(1)C(3,0);

(2)①抛物线y=ax2+bx+c,
令x=0,则y=c,
∴A点坐标(0,c).
∵b2=2ac,
=
∴点P的坐标为().
∵PD⊥x轴于D,∴点D的坐标为(,0).
根据题意,得a=a′,c=c′,
∴抛物线F′的解析式为y=ax2+b'x+c.
又∵抛物线F′经过点D(,0),
∴0=
∴0=b2-2bb'+4ac.
又∵b2=2ac,
∴0=3b2-2bb'.
∴b:b′=2:3.
②由①得,抛物线F′为y=ax2+bx+c.
令y=0,则ax2+bx+c=0.
∴x1=,x2=
∵点D的横坐标为
∴点C的坐标为(,0).
设直线OP的解析式为y=kx.
∵点P的坐标为(),
=k,
∴k=
∴y=-x.
∵点B是抛物线F与直线OP的交点,
∴ax2+bx+c=-x.
∴x1=,x2=
∵点P的横坐标为
∴点B的横坐标为
把x=代入y=-x,
得y=-)=
∴点B的坐标为(,c).
∴BC∥OA,AB∥OC.(或BC∥OA,BC=OA),
∴四边形OABC是平行四边形.
又∵∠AOC=90°,
∴四边形OABC是矩形.
点评:本题着重考查了待定系数法求二次函数的性质、函数的平移变换、探究矩形的构成情况等重要知识点.
练习册系列答案
相关习题

科目:初中数学 来源:2009年全国中考数学试题汇编《二次函数》(09)(解析版) 题型:解答题

(2009•大连)如图,抛物线F:y=ax2+bx+c的顶点为P,抛物线F与y轴交于点A,与直线OP交于点B.过点P作PD⊥x轴于点D,平移抛物线F使其经过点A、D得到抛物线F′:y=a′x2+b′x+c′,抛物线F′与x轴的另一个交点为C.
(1)当a=1,b=-2,c=3时,求点C的坐标(直接写出答案);
(2)若a、b、c满足了b2=2ac
①求b:b′的值;
②探究四边形OABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2009•大连)如图,直线y=-x-2交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c的顶点为A,且经过点B.
(1)求该抛物线的解析式;
(2)若点C(m,)在抛物线上,求m的值.

查看答案和解析>>

科目:初中数学 来源:2009年辽宁省大连市中考数学试卷(解析版) 题型:解答题

(2009•大连)如图,直线y=-x-2交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c的顶点为A,且经过点B.
(1)求该抛物线的解析式;
(2)若点C(m,)在抛物线上,求m的值.

查看答案和解析>>

科目:初中数学 来源:2010年北京市中考模拟试卷汇总:圆(解析版) 题型:解答题

(2009•大连)如图,在⊙O中,AB是直径,AD是弦,∠ADE=60°,∠C=30度.
(1)判断直线CD是否是⊙O的切线,并说明理由;
(2)若CD=,求BC的长.

查看答案和解析>>

同步练习册答案