精英家教网 > 初中数学 > 题目详情

已知:关于x的方程x2+2x=3-4k有两个不相等的实数根(其中k为实数).

1.求k的取值范围;

2.若k为非负整数,求此时方程的根.

 

【答案】

 

1.解一:原方程可化为(x+1)2=4-4k.

∵该方程有两个不相等的实数根,

∴4-4k>0.

解得k<1.

∴k的取值范围是k<1.

解二:原方程可化为x2+2x+4k-3=0.

        =22-4(4k-3)=4(4-4k).以下同解法一.

2.解:∵k为非负整数,k<1,

∴k=0.

此时方程为x2+2x=3,它的根为x1=-3,x2=1.

 【解析】略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:关于x的方程mx2-3(m-1)x+2m-3=0.
(1)求证:m取任何实数量,方程总有实数根;
(2)若二次函数y1=mx2-3(m-1)x+2m-3的图象关于y轴对称;
①求二次函数y1的解析式;
②已知一次函数y2=2x-2,证明:在实数范围内,对于x的同一个值,这两个函数所对应的函数值y1≥y2均成立;
(3)在(2)条件下,若二次函数y3=ax2+bx+c的图象经过点(-5,0),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值y1≥y3≥y2均成立,求二次函数y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

17、已知:关于x的方程x2+2x=3-4k有两个不相等的实数根(其中k为实数)
(1)则k的取值范围是
k<1

(2)若k为非负整数,则此时方程的根是
-3或1

查看答案和解析>>

科目:初中数学 来源: 题型:

3、已知:关于x的方程x2-kx-2=0.
(1)求证:方程有两个不相等的实数根;
(2)设方程的两根为x1,x2,如果2(x1+x2)>x1x2,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的方程ax2-(1-3a)x+2a-1=0,求证:a取任何实数时,方程ax2-(1-3a)x+2a-1=0总有实数根.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的方程x2+kx-12=0,求证:方程有两个不相等的实数根.

查看答案和解析>>

同步练习册答案