精英家教网 > 初中数学 > 题目详情
已知:如图,△ABC中,CA=CB,点D为AC的中点,以AD为直径的⊙O切BC于点E,AD=2.
(1)求BE的长;
(2)过点D作DF∥BC交⊙O于点F,求DF的长.

【答案】分析:(1)根据AD=2,AD=CD可以得到CD,CA的长,根据切割线定理得到CE2=CD•CA就可以求出CE的长;
(2)过点OG⊥DF与G,则DG=FD,可以证明△OGD∽△OEC,然后利用相似三角形的对应边成比例可以求出DG,也就可以求出DF.
解答:解:(1)如图,连接OE交FD于点G,
∵点D为AC的中点,AD=2
∴AC=4
∴BC=AC=4.
∵BC切⊙O于E,
∴OE⊥BC,

∴BE=4-2

(2)∵DF∥BC,
∴△OGD∽△OEC,



∴OE⊥BC,
∴OE⊥FG,

点评:本题主要考查了切割线定理,垂径定理,以及相似三角形的性质,相似三角形的对应边成比例等知识来解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案