精英家教网 > 初中数学 > 题目详情

【题目】如图:在正方形ABCD中,E为CD边上的一点,F为BC的延长线上一点,CE=CF。

⑴△BCE与△DCF全等吗?说明理由;

⑵若∠BEC=60o,求∠EFD。

【答案】(1) △BCE≌△DCF(2)15°

【解析】(1)利用正方形的性质即可得到△BCE与△DCF全等的条件;(2)利用等腰三角形和全等三角形的性质即可求出∠EFD的度数.

解:⑴△BCE≌△DCF

 理由:∵四边形ABCD是正方形∴BCCD,∠BCD=90o

∴∠BCE=∠DCF  又CECF  ∴△BCE≌△DCF(SAS) 

⑵∵CECF∴∠CEF=∠CFE ∵∠FCE=90o

∴∠CFE

又∵△BCE≌△DCF ∴∠CFD=∠BEC=60°

∴∠EFD=∠CFD-∠CFE=60°-45°=15°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD折叠,使得点B落在边AD上,记为点G,BC的对应边GI与边CD交于点H,折痕为EF,则AE=时,△EGH为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知

⑴若的中点,则_____

⑵若的中点,则_____

⑶若的中点,则____

⑷以此类推,若C100AC99的中点,则AC100=____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线L1过A(0,2),B(2,0)两点,直线L2:y=mx+b过点C(1,0),且把△AOB分成两部分,其中靠近原点的那部分是一个三角形,设此三角形的面积为S,求S关于m的函数解析式,及自变量m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,对两人进行了五次模拟,并对成绩(单位:分)进行了整理,计算出 =83分, =82分,绘制成如下尚不完整的统计图表. 甲、乙两人模拟成绩统计表

甲成绩/分

79

86

82

a

83

乙成绩/分

88

79

90

81

72

根据以上信息,回答下列问题:
(1)a=
(2)请完成图中表示甲成绩变化情况的折线.
(3)经计算S2=6,S2=42,综合分析,你认为选拔谁参加比赛更合适,说明理由.
(4)如果分别从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于82分的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线C1:y=a(x+1)(x﹣3a)(a>0)与x轴交于A,B两点(A在B的左侧),与y轴交于点C(0,﹣3)
(1)求抛物线C1的解析式及A,B点坐标;
(2)求抛物线C1的顶点坐标;
(3)将抛物线C1向上平移3个单位长度,再向左平移n(n>0)个单位长度,得到抛物线C2 , 若抛物线C2的顶点在△ABC内,求n的取值范围. (在所给坐标系中画出草图C1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为3,将等腰直角三角板的45°角的顶点放在点B处,直角顶点FCD的延长线上,BFAD交于点G,斜边与CD交于点E,CE=1,则DG的长为( )

A. B. C. D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.

(1)观察猜想

如图1,当点D在线段BC上时,

①BC与CF的位置关系为:   

②BC,CD,CF之间的数量关系为:   ;(将结论直接写在横线上)

(2)数学思考

如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.

(3)拓展延伸

如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将两块三角尺AOBCOD的直角顶点O重合在一起,若∠AOD=4BOC,OE为∠BOC的平分线,则∠DOE的度数为(  )

A. 36° B. 45° C. 60° D. 72°

查看答案和解析>>

同步练习册答案