精英家教网 > 初中数学 > 题目详情
7.若关于x的方程ax=3x-1的解是负数,则a的取值范围是(  )
A.a<1B.a>3C.a>3或a<1D.a<2

分析 把a看做已知数表示出方程的解,根据方程的解为负数,求出a的范围即可.

解答 解:方程ax=3x-1,
解得:x=-$\frac{1}{a-3}$,
由方程解为负数,得到-$\frac{1}{a-3}$<0,
解得:a>3,
则a的取值范围是a>3.
故选B.

点评 此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.对于抛物线y=ax2,当a=±1,±2时,动手画一下大致的图象,研究下a的取值对抛物线开口方向和开口大小的影响.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.解方程:x-5(x-1)=2;
解不等式:x-5(x-1)>2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.在图中画出函数y=-x+1,y=2x-5的图象,利用图象回答下列问题:
(1)求方程组$\left\{\begin{array}{l}{y=-x+1}\\{y=2x-5}\end{array}\right.$的解;
(2)函数y=-x+1中y随x的增大而减小,函数y=2x-5中y随x的增大而增大.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,已知等腰直角三角形△ABC中,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且满足EA=CF.求证:DE=DF;DE⊥DF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,四边形ABCD是平行四边形,延长BC到点E,使CE=BC,你认为四边形ACED是平行四边形吗?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.“双基”考查题(每题2分,共30分)
(1)-27的立方根是-3,18的算术平方根是3$\sqrt{2}$.
(2)化简:$\sqrt{3}×\sqrt{\frac{25}{48}}$=$\frac{5}{4}$,$\sqrt{18}-3\sqrt{32}$=-9$\sqrt{2}$.
(3)比较大小:$\frac{{\sqrt{5}-1}}{2}$< $\frac{7}{8}$,$\sqrt{32}$<5.6.
(4)图象经过点A(-2,6)的正比例函数的关系式为y=-3x.
(5)方程组$\left\{\begin{array}{l}x+2y=7\\ x-2y=3\end{array}\right.$的解是$\left\{\begin{array}{l}{x=5}\\{y=1}\end{array}\right.$.
(6)八年级一班47名同学中,12岁的有5人,13岁的有27人,14岁的有12人,15岁的有3人,则这班同学的年龄的众数是13岁,中位数是13岁.
(7)一个正多边形的每个内角都为135°,则这个多边形的内角和是1080度.

(8)将一条2cm线段向右平移3cm后,连接对应点得到的图形的周长是10cm.
(9)、某拖拉机的油箱有油100升,每工作1小时耗油8升,则油箱的剩余油量y(升)与工作时间x(时)间的函数关系式为y=-8x+100.
(10)如图,正方形ABCD的对角线相交于点O,这个正方形可以看作由什么“基本图形”经过怎样的变化形成的?Rt△ABC轴对称得到.
(11)如图是用形状、大小完全相同的等腰梯形密铺成的图案的一部分,这个图案中的等腰梯形的内角度数分别是60°,60°120°,120°.
(12)如图,若用(2,3)表示图上校门A的位置,则图书馆B的位置可表示为(1,6),(5,5)表示点D的位置.
(13)如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=60°,AB=4cm,则△AOB的形状是等边三角形,AC长是8cm,BC长是4$\sqrt{3}$cm.
(14)小明从九龙山邮局买了面值50分和80分的邮票共9枚,花了6.3元.小明买了两种邮票各多少枚?
若设买了面值50分的邮票x枚,80分的邮票y枚,则可列出的方程组是$\left\{\begin{array}{l}{x+y=9}\\{0.5x+0.8y=6.3}\end{array}\right.$.
(15)根据图填空:x=$\sqrt{2}$,y=$\sqrt{3}$,z=2,w=$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知关于x的方程mx2-3(m-1)x+2m-3=0的两个实数根互为相反数,令二次函数y1=mx2-3(m-1)x+2m-3,一次函数y2=2x-2.若二次函数y3=ax2+bx+c的图象经过点(-5,0),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值y1≥y3≥y2均成立,求二次函数y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.函数y=$\frac{k}{x}$的图象经过点A(-4,3),则k=-12,其图象分布在二、四象限.

查看答案和解析>>

同步练习册答案